`a`
Journal of Modern Dynamics (JMD)
 

Minimal yet measurable foliations
Pages: 93 - 107, Issue 1, March 2014

doi:10.3934/jmd.2014.8.93      Abstract        References        Full text (197.7K)           Related Articles

Gabriel Ponce - Departamento de Matemática, ICMC-USP São Carlos- SP, Brazil (email)
Ali Tahzibi - Departamento de Matematica, ICMC-USP São Carlos, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil (email)
Régis Varão - Departamento de Matemática, ICMC-USP São Carlos-SP, Brazil (email)

1 A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, arXiv:1110.2365v2, 2011.
2 A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory and Dynamical Systems, 23 (2003), 1655-1670.       
3 L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.       
4 C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.       
5 M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312.       
6 M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11.       
7 M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.       
8 J. Franks, Anosov diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93.       
9 A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.       
10 A. Hammerlindl, Leaf conjugacies on the torus, to appear in Ergodic Theory and Dynamical Systems, 2009.       
11 A. Hammerlindl, Leaf Conjugacies on the Torus, Ph.D. Thesis, University of Toronto, Canada, 2009.       
12 A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, preprint, arXiv:1302.0543, 2013.
13 A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 2013.
14 M. Hirayama and Y. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.       
15 M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977.       
16 F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539.       
17 G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$, to appear in Proceedings of AMS, 2013.
18 V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk, 22 (1967), 3-56.       
19 D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.       
20 R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.       
21 M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.       
22 D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14.       
23 R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.       
24 R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, to appear in Ergodic Theory and Dynamical Systems, 2014
25 Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32 (1977), 55-114.

Go to top