`a`
Mathematical Biosciences and Engineering (MBE)
 

On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria
Pages: 1139 - 1166, Issue 5, October 2014

doi:10.3934/mbe.2014.11.1139      Abstract        References        Full text (718.7K)           Related Articles

Alma Mašić - EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, CH-8600 Dübendorf,, Switzerland (email)
Hermann J. Eberl - Biophysics Interdepartmental Program and Department, of Mathematics and Statistics, University of Guelph, Guelph ON, N1G 2W1, Canada (email)

1 F. Abbas, R. Sudarsan and H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates, Math. Biosc. Eng., 9 (2012), 215-239.       
2 F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem, Appl. Math. Comp., 218 (2011), 1484-1494.       
3 M. M. Ballyk, D. A. Jones and H. L. Smith, The biofilm model of Freter: A review, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., 1936, Springer, Berlin, 2008, 265-302.       
4 M. M. Ballyk, D. A. Jones and H. L. Smith, Microbial competition in reactors with wall attachment, Microb. Ecol., 41 (2001), 210-221.
5 J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming, SIAM series Adv. Design and Control, Philadelphia, 2010.       
6 C. Carathéodory, Vorlesungen über reelle Funktionen, 3rd edition, Chelsea Publ, 1968.       
7 N. G. Cogan, B. Szomolay and M. Dindo, Effect of periodic disinfection on persisters in a one-dimensional biofilm model, Bull. Math. Biol., 75 (2013), 94-123.       
8 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.       
9 W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag New York Inc, 1975.       
10 R. Freter, H. Brickner, J. Fekete, M. Vickerman and K. Carey, Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun., 39 (1983), 686-703.
11 P. Gajardo, J. Harmand, H. Ramírez C. and A. Rapaport, Minimal time bioremediation of natural water resources, Automatica, 47 (2011), 1764-1769.       
12 A. Göpfert and R. Nehse, Vektoroptimierung, BSB Teubner Verlagsgesellschaft, Leipzig, 1990.       
13 E. V. Grigorieva and E. N. Khailov, Minimization of pollution concentration on a given time interval for the waste water cleaning plant, J. Control Sci. Eng. Article, 2010 (2010), 1-10.
14 B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit - An open-source framework for automatic control and dynamic optimization, Optim. Contr. Appl. Met., 32 (2010), 298-312.       
15 I. Ivanovic and T. O. Leiknes, Particle separation in Moving Bed Biofilm Reactor: Applications and opportunities, Separ. Sci. Technol., 47 (2012), 647-653.
16 J. Jahn, Vector Optimization: Theory, Applications and Extensions, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2011.       
17 T. L. Johnson, J. P. McQuarrie and A. R. Shaw, Integrated Fixed-film Activated Sludge (IFAS): The new choice for nitrogen removal upgrades in the United States, Proceedings WEFTEC Session, (2004), 296-318.
18 D. Jones, H. V. Kojouharov, D. Le and H. Smith, The Freter model: A simple model of biofilm formation, J. Math. Biol., 47, (2003), 137-152.       
19 J. B. Kaplan, Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 89 (2010), 205-218.
20 I. Klapper, Productivity and equilibrium in simple biofilm models, Bull. Math. Biol., 74 (2012), 2917-2934.       
21 Z. Lewandowski and H. Beyenal, Fundamentals of Biofilm Research, CRC Press, Boca Raton, 2007.
22 A. Mašić and H. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74 (2012), 1001-1026.       
23 A. Mašić and H. Eberl, A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor, Bull. Math. Biol., 76 (2014), 27-58.       
24 The Mathworks, MATLAB online documentation, http://www.mathworks.com/help/matlab/, accessed on January 18, 2013.
25 J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.       
26 E. Morgenroth, M. C. M. van Loosdrecht and O. Wanner, Biofilm models for the practitioner, Water Sci. Technol., 41 (2000), 509-512.
27 L. S. Pontryagin, N. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.       
28 B. E. Rittmann and P. L. McCarty, Environmental Biotechnology, McGraw-Hill, New York, 2001.
29 M. E. Roberts and X.-M. Zhan, Moving-medium Biofilm Reactors, Rev. Environ. Sci. Biotechnol., 2 (2003), 213-224.
30 I. M. Ross, A beginner's guide to DIDO: A MATLAB application package for solving optimal control problems, Elissar Global, Monterey, CA, 2007.
31 I. Y. Smets and J. F. Van Impe, Optimal control of (bio-)chemical reactors: Generic properties of time and space dependent optimization, Math. Comput. Simulat., 60 (2002), 475-486.       
32 E. D. Stemmons and H. L. Smith, Competition in a chemostat with wall attachment, SIAM J. Appl. Math., 61 (2000), 567-595.       
33 B. Szomolay, I. Klapper and M. Dindos, Analysis of adaptive response to dosing protocols for biofilm control, SIAM J. Appl. Math., 70 (2010), 3175-3202.       
34 M. von Sperling, Activated Sludge and Aerobic Biofilm Reactors, IWA Publishing, London, 2007.
35 W. Walter, Gewöhnliche Differentialgleichungen, 7th ed., Springer, 2000.
36 O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, Mathematical Modeling of Biofilms, Scientific and Technical Report No.18, IWA Publishing, 2006.
37 M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Systems & Control: Foundations & Applications, Birkhäuser Boston, 1994.       

Go to top