• Previous Article
    The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5
  • PROC Home
  • This Issue
  • Next Article
    Sufficient conditions for oscillations of higher order neutral delay differential equations
1998, 1998(Special): 118-123. doi: 10.3934/proc.1998.1998.118

Highly discontinuous elliptic problems

1. 

Dipartimento di Ingegneria Elettronica e Matematica Applicata, Università di Reggio Calabria, via E. Cuzzocrea 48, 89128 Reggio Calabria, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania

Published  November 2013

Please refer to Full Text.
Citation: G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118
[1]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[2]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[3]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

[4]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[5]

Luís Balsa Bicho, António Ornelas. Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 439-451. doi: 10.3934/dcds.2011.29.439

[6]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[7]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[8]

Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333

[9]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[10]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[11]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[12]

Andrés Ávila, Louis Jeanjean. A result on singularly perturbed elliptic problems. Communications on Pure & Applied Analysis, 2005, 4 (2) : 341-356. doi: 10.3934/cpaa.2005.4.341

[13]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[14]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[15]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-36. doi: 10.3934/dcdsb.2018104

[16]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[17]

Gary Lieberman. Oblique derivative problems for elliptic and parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2409-2444. doi: 10.3934/cpaa.2013.12.2409

[18]

Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69

[19]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[20]

V. Lakshmikantham, S. Leela. Generalized quasilinearization and semilinear degenerate elliptic problems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 801-808. doi: 10.3934/dcds.2001.7.801

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]