1998, 1998(Special): 19-28. doi: 10.3934/proc.1998.1998.19

Effect of Newtonian cooling on magnetoacoustic waves in a thermally conducting isothermal atmosphere

1. 

Department of Mathematics, Dillard University, New Orleans, LA 70122, United States

2. 

Department of mathematics, University of New Orleans, New Orleans, LA 70148, United States

Published  November 2013

Please refer to Full Text.
Citation: Hadi Y. Alkahby, M. A. Mahrous. Effect of Newtonian cooling on magnetoacoustic waves in a thermally conducting isothermal atmosphere. Conference Publications, 1998, 1998 (Special) : 19-28. doi: 10.3934/proc.1998.1998.19
[1]

Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95

[2]

G. A. Leonov. Generalized Lorenz Equations for Acoustic-Gravity Waves in the Atmosphere. Attractors Dimension, Convergence and Homoclinic Trajectories. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2253-2267. doi: 10.3934/cpaa.2017111

[3]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[4]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[5]

Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

[6]

Juhi Jang, Ian Tice. Passive scalars, moving boundaries, and Newton's law of cooling. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1383-1413. doi: 10.3934/dcds.2016.36.1383

[7]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[8]

Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619

[9]

Dixiang Cheng, Zhengrong Liu, Xin Huang. Periodic solutions of a class of Newtonian equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1795-1801. doi: 10.3934/cpaa.2009.8.1795

[10]

Emre Kiliç, Mehmet Çayören, Ali Yapar, Íbrahim Akduman. Reconstruction of perfectly conducting rough surfaces by the use of inhomogeneous surface impedance modeling. Inverse Problems & Imaging, 2009, 3 (2) : 295-307. doi: 10.3934/ipi.2009.3.295

[11]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[12]

W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary non-isothermal flow of electrorheological fluids. Communications on Pure & Applied Analysis, 2005, 4 (4) : 779-803. doi: 10.3934/cpaa.2005.4.779

[13]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[14]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[15]

Kota Kumazaki, Akio Ito, Masahiro Kubo. Generalized solutions of a non-isothermal phase separation model. Conference Publications, 2009, 2009 (Special) : 476-485. doi: 10.3934/proc.2009.2009.476

[16]

Kota Kumazaki. Periodic solutions for non-isothermal phase transition models. Conference Publications, 2011, 2011 (Special) : 891-902. doi: 10.3934/proc.2011.2011.891

[17]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[18]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[19]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Non-isothermal cyclic fatigue in an oscillating elastoplastic beam. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2973-2996. doi: 10.3934/cpaa.2013.12.2973

[20]

Kota Kumazaki, Masahiro Kubo. Variational inequalities for a non-isothermal phase field model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 409-421. doi: 10.3934/dcdss.2011.4.409

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]