2013, 2013(special): 837-845. doi: 10.3934/proc.2013.2013.837

Anosov diffeomorphisms

1. 

LIAAD-INESC TEC and Department of Mathematics, School of Technology and Management, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1134, 5301-857 Bragança, Portugal

2. 

Departamento de Matemática, IME-USP, Caixa Postal 66281, CEP 05315-970 São Paulo, Brazil

3. 

LIAAD-INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

4. 

Warwick Systems Biology & Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Received  September 2012 Revised  October 2013 Published  November 2013

We use Adler, Tresser and Worfolk decomposition of Anosov automorphisms to give an explicit construction of the stable and unstable $C^{1+}$ self-renormalizable sequences.
Citation: João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837
References:
[1]

R. Adler, C. Tresser and P. A. Worfolk, Topological conjugacy of linear endomorphisms of the 2-torus,, Trans. Amer. Math. Soc., 349 (1997), 1633.

[2]

J. P. Almeida, A. M. Fisher, A. A. Pinto and D. A. Rand, Anosov and circle diffeomorphisms,, in, (2011), 11.

[3]

J. P. Almeida, A. A. Pinto and D. A. Rand, Renormalization of circle diffeomorphism sequences and Markov sequences,, to appear in, (2012).

[4]

V. I. Arnol'd, Small denominators I: On the mapping of a circle into itself,, Investijia Akad. Nauk. Math., 25 (1961), 21.

[5]

E. Cawley, The Teichmüller space of an Anosov diffeomorphism of $T^2$,, Inventiones Mathematicae, 112 (1993), 351.

[6]

P. Coullet and C. Tresser, Itération d'endomorphismes et groupe de renormalisation,, Journal de Physique Colloques, 39 (1978), 5.

[7]

J. Franks, Anosov diffeomorphisms,, in, 14 (1970), 61.

[8]

E. Ghys, Rigidité différentiable des groupes Fuchsiens,, Publ. IHES, 78 (1993), 163.

[9]

M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Publ. IHES, 49 (1979), 5.

[10]

Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials,, preprint, (2008), 1.

[11]

Y. Jiang, Metric invariants in dynamical systems,, Journal of Dynamics and Differentiable Equations, 17 (2005), 51.

[12]

O. Lanford, Renormalization group methods for critical circle mappings with general rotation number,, in, (1987), 532.

[13]

R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems II,, Commun. Math. Phys., 109 (1987), 369.

[14]

A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.

[15]

R. Manẽ, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).

[16]

J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems I,, Commun. Math. Phys., 109 (1987), 681.

[17]

J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems III,, Commun. Math. Phys., 112 (1989), 317.

[18]

H. Masur, Interval exchange transformations and measured foliations,, The Annals of Mathematics. 2nd Ser., 115 (1982), 169.

[19]

W. de Melo and S. van Strien, "One-dimensional Dynamics,", A series of Modern Surveys in Mathematics, (1993).

[20]

R. C. Penner and J. L. Harer, "Combinatorics of Train-Tracks,", Princeton University Press, (1992).

[21]

A. A. Pinto, J. P. Almeida and A. Portela, Golden tilings,, Transactions of the American Mathematical Society, 364 (2012), 2261.

[22]

A. A. Pinto, J. P. Almeida and D. A. Rand, Anosov and renormalized circle diffeomorphisms,, submitted, (2012), 1.

[23]

A. A. Pinto and D. A. Rand, Train-tracks with $C^{1+}$ self-renormalisable structures,, Journal of Difference Equations and Applications, 16 (2010), 945.

[24]

A. A. Pinto and D. A. Rand, Solenoid functions for hyperbolic sets on surfaces,, in, (2007), 145.

[25]

A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces,, J. London Math. Soc., 71 (2004), 481.

[26]

A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.

[27]

A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics,, Ergodic Theory & Dynamical Systems, 22 (2002), 1905.

[28]

A. A. Pinto and D. A. Rand, Existence, uniqueness and ratio decomposition for Gibbs states via duality,, Ergodic Theory & Dynamical Systems, 21 (2001), 533.

[29]

A. A. Pinto and D. A. Rand, Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces,, Warwick preprint, (1995).

[30]

A. A. Pinto, D. A. Rand and F. Ferreira, Arc exchange systems and renormalization,, Journal of Difference Equations and Applications, 16 (2010), 347.

[31]

A. A. Pinto, D. A. Rand and F. Ferreira, Cantor exchange systems and renormalization,, Journal of Differential Equations, 243 (2007), 593.

[32]

A. A. Pinto, D. A. Rand and F. Ferreira, "Fine structures of hyperbolic diffeomorphisms,", Springer Monographs in Mathematics, (2009).

[33]

A. A. Pinto and D. Sullivan, The circle and the solenoid,, Dedicated to Anatole Katok On the Occasion of his 60th Birthday, 16 (2006), 463.

[34]

M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).

[35]

Ya. Sinai, Markov Partitions and C-diffeomorphisms,, Anal. and Appl., 2 (1968), 70.

[36]

W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc., 19 (1988), 417.

[37]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, The Annals of Mathematics, 115 (1982), 201.

[38]

R. F. Williams, Expanding attractors,, Publ. I.H.E.S., 43 (1974), 169.

[39]

R. F. Williams, The "DA" maps of Smale and structural stability,, in, (1970), 329.

[40]

J. C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Scient. Éc. Norm. Sup., 17 (1984), 333.

show all references

References:
[1]

R. Adler, C. Tresser and P. A. Worfolk, Topological conjugacy of linear endomorphisms of the 2-torus,, Trans. Amer. Math. Soc., 349 (1997), 1633.

[2]

J. P. Almeida, A. M. Fisher, A. A. Pinto and D. A. Rand, Anosov and circle diffeomorphisms,, in, (2011), 11.

[3]

J. P. Almeida, A. A. Pinto and D. A. Rand, Renormalization of circle diffeomorphism sequences and Markov sequences,, to appear in, (2012).

[4]

V. I. Arnol'd, Small denominators I: On the mapping of a circle into itself,, Investijia Akad. Nauk. Math., 25 (1961), 21.

[5]

E. Cawley, The Teichmüller space of an Anosov diffeomorphism of $T^2$,, Inventiones Mathematicae, 112 (1993), 351.

[6]

P. Coullet and C. Tresser, Itération d'endomorphismes et groupe de renormalisation,, Journal de Physique Colloques, 39 (1978), 5.

[7]

J. Franks, Anosov diffeomorphisms,, in, 14 (1970), 61.

[8]

E. Ghys, Rigidité différentiable des groupes Fuchsiens,, Publ. IHES, 78 (1993), 163.

[9]

M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Publ. IHES, 49 (1979), 5.

[10]

Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials,, preprint, (2008), 1.

[11]

Y. Jiang, Metric invariants in dynamical systems,, Journal of Dynamics and Differentiable Equations, 17 (2005), 51.

[12]

O. Lanford, Renormalization group methods for critical circle mappings with general rotation number,, in, (1987), 532.

[13]

R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems II,, Commun. Math. Phys., 109 (1987), 369.

[14]

A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.

[15]

R. Manẽ, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).

[16]

J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems I,, Commun. Math. Phys., 109 (1987), 681.

[17]

J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems III,, Commun. Math. Phys., 112 (1989), 317.

[18]

H. Masur, Interval exchange transformations and measured foliations,, The Annals of Mathematics. 2nd Ser., 115 (1982), 169.

[19]

W. de Melo and S. van Strien, "One-dimensional Dynamics,", A series of Modern Surveys in Mathematics, (1993).

[20]

R. C. Penner and J. L. Harer, "Combinatorics of Train-Tracks,", Princeton University Press, (1992).

[21]

A. A. Pinto, J. P. Almeida and A. Portela, Golden tilings,, Transactions of the American Mathematical Society, 364 (2012), 2261.

[22]

A. A. Pinto, J. P. Almeida and D. A. Rand, Anosov and renormalized circle diffeomorphisms,, submitted, (2012), 1.

[23]

A. A. Pinto and D. A. Rand, Train-tracks with $C^{1+}$ self-renormalisable structures,, Journal of Difference Equations and Applications, 16 (2010), 945.

[24]

A. A. Pinto and D. A. Rand, Solenoid functions for hyperbolic sets on surfaces,, in, (2007), 145.

[25]

A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces,, J. London Math. Soc., 71 (2004), 481.

[26]

A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.

[27]

A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics,, Ergodic Theory & Dynamical Systems, 22 (2002), 1905.

[28]

A. A. Pinto and D. A. Rand, Existence, uniqueness and ratio decomposition for Gibbs states via duality,, Ergodic Theory & Dynamical Systems, 21 (2001), 533.

[29]

A. A. Pinto and D. A. Rand, Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces,, Warwick preprint, (1995).

[30]

A. A. Pinto, D. A. Rand and F. Ferreira, Arc exchange systems and renormalization,, Journal of Difference Equations and Applications, 16 (2010), 347.

[31]

A. A. Pinto, D. A. Rand and F. Ferreira, Cantor exchange systems and renormalization,, Journal of Differential Equations, 243 (2007), 593.

[32]

A. A. Pinto, D. A. Rand and F. Ferreira, "Fine structures of hyperbolic diffeomorphisms,", Springer Monographs in Mathematics, (2009).

[33]

A. A. Pinto and D. Sullivan, The circle and the solenoid,, Dedicated to Anatole Katok On the Occasion of his 60th Birthday, 16 (2006), 463.

[34]

M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).

[35]

Ya. Sinai, Markov Partitions and C-diffeomorphisms,, Anal. and Appl., 2 (1968), 70.

[36]

W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc., 19 (1988), 417.

[37]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, The Annals of Mathematics, 115 (1982), 201.

[38]

R. F. Williams, Expanding attractors,, Publ. I.H.E.S., 43 (1974), 169.

[39]

R. F. Williams, The "DA" maps of Smale and structural stability,, in, (1970), 329.

[40]

J. C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Scient. Éc. Norm. Sup., 17 (1984), 333.

[1]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[2]

Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765

[3]

Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553

[4]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[5]

Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645

[6]

Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183

[7]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[8]

Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31.

[9]

Antonio Pumariño, Joan Carles Tatjer. Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 971-1005. doi: 10.3934/dcdsb.2007.8.971

[10]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[11]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[12]

Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075

[13]

Sheldon Newhouse. Distortion estimates for planar diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 345-412. doi: 10.3934/dcds.2008.22.345

[14]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[15]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[16]

Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 241-272. doi: 10.3934/dcdss.2017012

[17]

Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[18]

S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541

[19]

Nuno Franco, Luís Silva. Genus and braid index associated to sequences of renormalizable Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 565-586. doi: 10.3934/dcds.2012.32.565

[20]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]