
Previous Article
Stochastic deformation of classical mechanics
 PROC Home
 This Issue

Next Article
Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport
Traveling wave solutions with mixed dispersal for spatially periodic FisherKPP equations
1.  Department of Mathematics, University of Kansas, Lawrence, KS 66045, United States 
References:
show all references
References:
[1] 
Gregoire Nadin. How does the spreading speed associated with the FisherKPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 17851803. doi: 10.3934/dcdsb.2015.20.1785 
[2] 
Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the FisherKPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 118. doi: 10.3934/cpaa.2012.11.1 
[3] 
Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 16651696. doi: 10.3934/dcds.2015.35.1665 
[4] 
Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal FisherKPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 11931213. doi: 10.3934/cpaa.2016.15.1193 
[5] 
Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous FisherKPP equation. Discrete & Continuous Dynamical Systems  B, 2014, 19 (3) : 801815. doi: 10.3934/dcdsb.2014.19.801 
[6] 
JianWen Sun, WanTong Li, ZhiCheng Wang. A nonlocal dispersal logistic equation with spatial degeneracy. Discrete & Continuous Dynamical Systems  A, 2015, 35 (7) : 32173238. doi: 10.3934/dcds.2015.35.3217 
[7] 
Carmen Cortázar, Manuel Elgueta, Jorge GarcíaMelián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 14091419. doi: 10.3934/dcds.2015.35.1409 
[8] 
Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the FisherKPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems  B, 2011, 16 (1) : 1529. doi: 10.3934/dcdsb.2011.16.15 
[9] 
François Hamel, James Nolen, JeanMichel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in FisherKPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275289. doi: 10.3934/nhm.2013.8.275 
[10] 
Matt Holzer. A proof of anomalous invasion speeds in a system of coupled FisherKPP equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 20692084. doi: 10.3934/dcds.2016.36.2069 
[11] 
Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in FisherKPP equations. Discrete & Continuous Dynamical Systems  B, 2009, 11 (1) : 1130. doi: 10.3934/dcdsb.2009.11.11 
[12] 
Benjamin Contri. FisherKPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119153. doi: 10.3934/nhm.2018006 
[13] 
ChiuYen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. nonlocal dispersal. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 551596. doi: 10.3934/dcds.2010.26.551 
[14] 
Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 27712788. doi: 10.3934/dcdsb.2012.17.2771 
[15] 
WanTong Li, Li Zhang, GuoBao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 15311560. doi: 10.3934/dcds.2015.35.1531 
[16] 
FeiYing Yang, WanTong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781798. doi: 10.3934/cpaa.2017037 
[17] 
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 177186. doi: 10.3934/dcdss.2008.1.177 
[18] 
FeiYing Yang, WanTong Li, JianWen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems  A, 2016, 36 (7) : 40274049. doi: 10.3934/dcds.2016.36.4027 
[19] 
Patrick Martinez, JeanMichel Roquejoffre. The rate of attraction of supercritical waves in a FisherKPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 24452472. doi: 10.3934/cpaa.2012.11.2445 
[20] 
FeiYing Yang, Yan Li, WanTong Li, ZhiCheng Wang. Traveling waves in a nonlocal dispersal KermackMcKendrick epidemic model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19691993. doi: 10.3934/dcdsb.2013.18.1969 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]