2013, 2013(special): 797-806. doi: 10.3934/proc.2013.2013.797

Longtime dynamics for an elastic waveguide model

1. 

Department of Mathematics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China, China

Received  September 2012 Published  November 2013

The paper studies the longtime dynamics for a nonlinear wave equation arising in elastic waveguide model: $u_{tt}- \Delta u-\Delta u_{tt}+\Delta^2 u- \Delta u_t -\Delta g(u)=f(x)$. It proves that the equation possesses in trajectory phase space a global trajectory attractor $\mathcal{A}^{tr}$ and the full trajectory of the equation in $\mathcal{A}^{tr}$ is of backward regularity provided that the growth exponent of nonlinearity $g(u)$ is supercritical.
Citation: Zhijian Yang, Ke Li. Longtime dynamics for an elastic waveguide model. Conference Publications, 2013, 2013 (special) : 797-806. doi: 10.3934/proc.2013.2013.797
References:
[1]

G. W. Chen, Y. P. Wang and S. B. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.

[2]

G. W. Chen and H. X. Xue, Periodic boundary value problem and Cauchy problem of the generalized cubic double dispersion equation,, Acta Mathematica Scientia, 28B (2008), 573.

[3]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics",, American Mathematical Society Colloquium Publications, 49 (2002).

[4]

Z. D. Dai and B. L. Guo, Global attractor of nonlinear strain waves in elastic wave guides,, Acta Math. Sci., 20 (2000), 322.

[5]

Y. C. Liu and R.Z. Xu, Potential well method for Cauchy problem of generalized double dispersion equations,, J. Math. Anal. Appl., 338 (2008), 1169.

[6]

Y. C. Liu and R. Z. Xu, Potential well method for initial boundary value problem of the generalized double dispersion equations,, Communications on Pure and Applied Analysis, 7 (2008), 63.

[7]

M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic wave guides in external media,, in, (1989), 99.

[8]

A. M. Samsonov, Nonlinear strain waves in elastic waveguide,, Samsonov, 341 (1994).

[9]

A. M. Samsonov, On Some Exact Travelling Wave Solutions for Nonlinear Hyperbolic Equation,, in, 227 (1993), 123.

[10]

S. B. Wang and G. W. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal. TMA., 64 (2006), 159.

[11]

R. Z. Xu and Y. C. Liu, Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations,, J. Math. Anal. Appl., 359 (2009), 739.

[12]

R. Z. Xu, Y. C. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal. TMA., 71 (2009), 4977.

[13]

Z. J. Yang, Global attractor for a nonlinear wave equation arising in elastic waveguide model,, Nonlinear Anal. TMA., 70 (2009), 2132.

[14]

Z. J. Yang, A global attractor for the elastic waveguide model in $R^N$,, Nonlinear Anal. TMA., 74 (2011), 6640.

[15]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities,, Disc. Cont. Dyn. System-A, 11 (2004), 351.

show all references

References:
[1]

G. W. Chen, Y. P. Wang and S. B. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.

[2]

G. W. Chen and H. X. Xue, Periodic boundary value problem and Cauchy problem of the generalized cubic double dispersion equation,, Acta Mathematica Scientia, 28B (2008), 573.

[3]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics",, American Mathematical Society Colloquium Publications, 49 (2002).

[4]

Z. D. Dai and B. L. Guo, Global attractor of nonlinear strain waves in elastic wave guides,, Acta Math. Sci., 20 (2000), 322.

[5]

Y. C. Liu and R.Z. Xu, Potential well method for Cauchy problem of generalized double dispersion equations,, J. Math. Anal. Appl., 338 (2008), 1169.

[6]

Y. C. Liu and R. Z. Xu, Potential well method for initial boundary value problem of the generalized double dispersion equations,, Communications on Pure and Applied Analysis, 7 (2008), 63.

[7]

M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic wave guides in external media,, in, (1989), 99.

[8]

A. M. Samsonov, Nonlinear strain waves in elastic waveguide,, Samsonov, 341 (1994).

[9]

A. M. Samsonov, On Some Exact Travelling Wave Solutions for Nonlinear Hyperbolic Equation,, in, 227 (1993), 123.

[10]

S. B. Wang and G. W. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal. TMA., 64 (2006), 159.

[11]

R. Z. Xu and Y. C. Liu, Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations,, J. Math. Anal. Appl., 359 (2009), 739.

[12]

R. Z. Xu, Y. C. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal. TMA., 71 (2009), 4977.

[13]

Z. J. Yang, Global attractor for a nonlinear wave equation arising in elastic waveguide model,, Nonlinear Anal. TMA., 70 (2009), 2132.

[14]

Z. J. Yang, A global attractor for the elastic waveguide model in $R^N$,, Nonlinear Anal. TMA., 74 (2011), 6640.

[15]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities,, Disc. Cont. Dyn. System-A, 11 (2004), 351.

[1]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[2]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[3]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[4]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[5]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[6]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[7]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[10]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[11]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[12]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[13]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[14]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[17]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[18]

Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

[19]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[20]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]