
Previous Article
Modeling the thermal conductance of phononic crystal plates
 PROC Home
 This Issue

Next Article
Existence of solutions to a multipoint boundary value problem for a second order differential system via the dual least action principle
Analyzing the infection dynamics and control strategies of cholera
1.  Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States 
2.  School of Mathematics and Statistics, Chongqing Technology and Business University, China 
3.  Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529 
References:
show all references
References:
[1] 
Kaifa Wang, Yang Kuang. Novel dynamics of a simple Daphniamicroparasite model with dosedependent infection. Discrete & Continuous Dynamical Systems  S, 2011, 4 (6) : 15991610. doi: 10.3934/dcdss.2011.4.1599 
[2] 
Jianxin Yang, Zhipeng Qiu, XueZhi Li. Global stability of an agestructured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641665. doi: 10.3934/mbe.2014.11.641 
[3] 
Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an ageofinfection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 13351349. doi: 10.3934/mbe.2013.10.1335 
[4] 
Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an ageofinfection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227247. doi: 10.3934/mbe.2016.13.227 
[5] 
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449469. doi: 10.3934/mbe.2014.11.449 
[6] 
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reactionconvectiondiffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559579. doi: 10.3934/mbe.2017033 
[7] 
Shangbing Ai. Global stability of equilibria in a tickborne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567572. doi: 10.3934/mbe.2007.4.567 
[8] 
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381400. doi: 10.3934/mbe.2015008 
[9] 
Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733752. doi: 10.3934/mbe.2011.8.733 
[10] 
Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633659. doi: 10.3934/mbe.2007.4.633 
[11] 
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525536. doi: 10.3934/mbe.2015.12.525 
[12] 
Alexander Rezounenko. Stability of a viral infection model with statedependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems  B, 2017, 22 (4) : 15471563. doi: 10.3934/dcdsb.2017074 
[13] 
Alexander Rezounenko. Viral infection model with diffusion and statedependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems  B, 2018, 23 (3) : 10911105. doi: 10.3934/dcdsb.2018143 
[14] 
Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643652. doi: 10.3934/proc.2013.2013.643 
[15] 
JingJing Xiang, Juan Wang, LiMing Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 22172232. doi: 10.3934/dcdsb.2015.20.2217 
[16] 
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multigroup SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 30573091. doi: 10.3934/dcdsb.2015.20.3057 
[17] 
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virusdriven proliferation of target cells. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17491768. doi: 10.3934/dcdsb.2014.19.1749 
[18] 
Jinliang Wang, Lijuan Guan. Global stability for a HIV1 infection model with cellmediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 297302. doi: 10.3934/dcdsb.2012.17.297 
[19] 
Antoine Perasso. Global stability and uniform persistence for an infection loadstructured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1532. doi: 10.3934/cpaa.2019002 
[20] 
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an agestructured virus dynamics model with BeddingtonDeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859877. doi: 10.3934/mbe.2015.12.859 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]