2013, 2013(special): 729-736. doi: 10.3934/proc.2013.2013.729

Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data

1. 

Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585

Received  August 2012 Revised  March 2013 Published  November 2013

Let $\Omega \subset \mathbb{R}^2$ be a smooth bounded domain and let $\Gamma = \left \{ p_1, \cdots, p_N \right \} \subset \Omega$ be the set of prescribed points. Consider the Liouville type equation \[ -\delta u = \lambda \Pi_{j = 1}^{N} |x - p_j|^{2\alpha_j} V(x) e^u \quad \mbox{in} \; \Omega, \quad u = 0 \quad \mbox{on} \; \partial \Omega, \] where $\alpha_j \; (j=1,\cdots, N)$ are positive numbers, $V(x) > 0$ is a given smooth function on $\bar{\Omega}$, and $\lambda > 0$ is a parameter. Let $\{ u_n \}$ be a blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$ having the $m$-points blow up set $S = \{ q_1, \cdots, q_m \} \subset \Omega$, i.e., \[ \lambda_n \prod_{j = 1}^N |x - p_j|^{2 \alpha_j} V(x) e^{u_n} dx \rightharpoonup \sum_{i=1}^m b_i \delta_{q_i} \] in the sense of measures, where $b_i = 8\pi$ if $q_i \notin \Gamma$, $b_i = 8\pi(1 + \alpha_j)$ if $q_i = p_j$ for some $p_j \in \Gamma$. We show that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large, provided $\alpha_j \in (0,+\infty) \setminus \mathbb{N}$ for all $j = 1, \cdots, N$. This is a generalization of the result [13] in which nonsingular case ($\alpha_j = 0$ for all $j$) was studied.
Citation: Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729
References:
[1]

D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7.

[2]

D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161.

[3]

D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3.

[4]

H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223.

[5]

P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).

[6]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310.

[7]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61.

[8]

Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255.

[9]

L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506.

[10]

K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173.

[11]

J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967.

[12]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115.

[13]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().

[14]

G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008).

[15]

Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001).

show all references

References:
[1]

D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7.

[2]

D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161.

[3]

D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3.

[4]

H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223.

[5]

P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).

[6]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310.

[7]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61.

[8]

Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255.

[9]

L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506.

[10]

K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173.

[11]

J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967.

[12]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115.

[13]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().

[14]

G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008).

[15]

Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001).

[1]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[2]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[3]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[4]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[5]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[6]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[7]

Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825

[8]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

[9]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[10]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[11]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[12]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[13]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[14]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[15]

Konstantin Mischaikow, Marian Mrozek, Frank Weilandt. Discretization strategies for computing Conley indices and Morse decompositions of flows. Journal of Computational Dynamics, 2016, 3 (1) : 1-16. doi: 10.3934/jcd.2016001

[16]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

[17]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[18]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[19]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[20]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]