• Previous Article
    Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents
  • PROC Home
  • This Issue
  • Next Article
    Validity and dynamics in the nonlinearly excited 6th-order phase equation
2013, 2013(special): 709-717. doi: 10.3934/proc.2013.2013.709

Initial boundary value problem for the singularly perturbed Boussinesq-type equation

1. 

College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Middle Road, Zhengzhou 450007, China, China, China

Received  September 2012 Revised  February 2013 Published  November 2013

We are concerned with the singularly perturbed Boussinesq-type equation including the singularly perturbed sixth-order Boussinesq equation, which describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number (surface tension parameter) less than but very close to $1/3$. The existence and uniqueness of the global generalized solution and the global classical solution of the initial boundary value problem for the singularly perturbed Boussinesq-type equation are proved.
Citation: Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709
References:
[1]

R. A. Admas, "Sobolev Space",, Academic Press, (1975).

[2]

P. Darapi and W. Hua, A numerical method for solving an ill-posed Boussinesq equation arising in water waves and nonlinear lattices,, Appl. Math. Comput., 101 (1999), 159.

[3]

P. Darapi and W. Hua, Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation,, Math. Comput. Sim., 55 (2001), 393.

[4]

R. K. Dash and P. Darapi, Analytical and numerical studies of a singularly perturbed Boussinesq equation,, Appl. Math. Comput., 126 (2002), 1.

[5]

Z. S. Feng, Traveling solitary wave solutions to the generalized Boussinesq equation,, Wave Motion, 37 (2003), 17.

[6]

A. Friedman, "Partial Differential Equation of Parabolic Type",, Prentice Hall, (1964).

[7]

H. A. Levine and B. D. Sleeman, A note on the non-existence of global solutions of initial boundary value problems for the Boussinesq equation $u_{t t} = 3u_{x x x x} + u_{x x} - 12(u^2)_{x x}$,, J. Math. Anal. Appl., 107 (1985), 206.

[8]

Z.J. Yang, On local existence of solutions of initial boundary value problems for the "bad'' Boussinesq-type equation,, Nonlinear Anal. TMA, 51 (2002), 1259.

[9]

Y. L. Zhou and H. Y. Fu, Nonlinear hyperbolic systems of higher order generalized Sine-Gordon type,, Acta Math. Sinica, 26 (1983), 234.

show all references

References:
[1]

R. A. Admas, "Sobolev Space",, Academic Press, (1975).

[2]

P. Darapi and W. Hua, A numerical method for solving an ill-posed Boussinesq equation arising in water waves and nonlinear lattices,, Appl. Math. Comput., 101 (1999), 159.

[3]

P. Darapi and W. Hua, Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation,, Math. Comput. Sim., 55 (2001), 393.

[4]

R. K. Dash and P. Darapi, Analytical and numerical studies of a singularly perturbed Boussinesq equation,, Appl. Math. Comput., 126 (2002), 1.

[5]

Z. S. Feng, Traveling solitary wave solutions to the generalized Boussinesq equation,, Wave Motion, 37 (2003), 17.

[6]

A. Friedman, "Partial Differential Equation of Parabolic Type",, Prentice Hall, (1964).

[7]

H. A. Levine and B. D. Sleeman, A note on the non-existence of global solutions of initial boundary value problems for the Boussinesq equation $u_{t t} = 3u_{x x x x} + u_{x x} - 12(u^2)_{x x}$,, J. Math. Anal. Appl., 107 (1985), 206.

[8]

Z.J. Yang, On local existence of solutions of initial boundary value problems for the "bad'' Boussinesq-type equation,, Nonlinear Anal. TMA, 51 (2002), 1259.

[9]

Y. L. Zhou and H. Y. Fu, Nonlinear hyperbolic systems of higher order generalized Sine-Gordon type,, Acta Math. Sinica, 26 (1983), 234.

[1]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[2]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[3]

Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203

[4]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[5]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[6]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[7]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[8]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[9]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[10]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[11]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[12]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[13]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[14]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[15]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[16]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[17]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[18]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[19]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[20]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]