
Previous Article
Stochastic heat equations with cubic nonlinearity and additive spacetime noise in 2D
 PROC Home
 This Issue

Next Article
Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents
Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena
1.  Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, 2121 Ohokayama, Meguroku, Tokyo 1520033, Japan 
2.  FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, 461 Komaba, Meguroku, Tokyo 1538505, Japan 
References:
show all references
References:
[1] 
Roberta Bosi. Classical limit for linear and nonlinear quantum FokkerPlanck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845870. doi: 10.3934/cpaa.2009.8.845 
[2] 
Michael Herty, Lorenzo Pareschi. FokkerPlanck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165179. doi: 10.3934/krm.2010.3.165 
[3] 
ShuiNee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of FokkerPlanck equations on graphs. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 49294950. doi: 10.3934/dcds.2018215 
[4] 
John W. Barrett, Endre Süli. Existence of global weak solutions to FokkerPlanck and NavierStokesFokkerPlanck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems  S, 2010, 3 (3) : 371408. doi: 10.3934/dcdss.2010.3.371 
[5] 
Ioannis Markou. Hydrodynamic limit for a FokkerPlanck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683705. doi: 10.3934/nhm.2017028 
[6] 
Jianhui Huang, Xun Li, Jiongmin Yong. A linearquadratic optimal control problem for meanfield stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97139. doi: 10.3934/mcrf.2015.5.97 
[7] 
Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in meanfield limit. Kinetic & Related Models, 2011, 4 (1) : 385399. doi: 10.3934/krm.2011.4.385 
[8] 
SeungYeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and meanfield limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297322. doi: 10.3934/nhm.2018013 
[9] 
Michael Herty, Mattia Zanella. Performance bounds for the meanfield limit of constrained dynamics. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 20232043. doi: 10.3934/dcds.2017086 
[10] 
William F. Thompson, Rachel Kuske, YueXian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete & Continuous Dynamical Systems  A, 2012, 32 (8) : 29712995. doi: 10.3934/dcds.2012.32.2971 
[11] 
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic FokkerPlanck equation. Kinetic & Related Models, 2018, 11 (2) : 357395. doi: 10.3934/krm.2018017 
[12] 
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model FokkerPlanck equation. Kinetic & Related Models, 2012, 5 (3) : 485503. doi: 10.3934/krm.2012.5.485 
[13] 
Marco Torregrossa, Giuseppe Toscani. On a FokkerPlanck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337355. doi: 10.3934/krm.2018016 
[14] 
José Antonio Alcántara, Simone Calogero. On a relativistic FokkerPlanck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401426. doi: 10.3934/krm.2011.4.401 
[15] 
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Meanfield backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19291967. doi: 10.3934/dcdsb.2013.18.1929 
[16] 
Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 883894. doi: 10.3934/dcdsb.2011.16.883 
[17] 
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic FokkerPlanck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 14271441. doi: 10.3934/krm.2018056 
[18] 
Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the FokkerPlanck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163177. doi: 10.3934/jcd.2016008 
[19] 
Giuseppe Toscani. A Rosenautype approach to the approximation of the linear FokkerPlanck equation. Kinetic & Related Models, 2018, 11 (4) : 697714. doi: 10.3934/krm.2018028 
[20] 
SeungYeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the CuckerSmale model and its application to the MeanField limit. Kinetic & Related Models, 2018, 11 (5) : 11571181. doi: 10.3934/krm.2018045 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]