2013, 2013(special): 663-672. doi: 10.3934/proc.2013.2013.663

Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion

1. 

Lehrstuhl für Höhere Mathematik und Analytische Mechanik, Technische Universität München, Fakultät für Mathematik, D-85747 Garching, Germany

Received  August 2012 Revised  May 2013 Published  November 2013

Dramatic increases in jellyfish populations which lead to the collapse of formerly healthy ecosystems are repeatedly reported from many different sites, cf. [6,8,14]. Due to their devastating effects on fishery the understanding of the causes for such a blooming are of major ecological as well as economical importance. Assuming fish as the dominant predator species we model a combined two species system subject to constant environmental conditions. By totally analytic means we completely classify all biologically relevant equilibria in terms of existence and Lyapunov stability, and give a complete description of this system's non-linear global dynamics supported by numerical simulations. This approach complements, from a systematic point of view, the studies given in the literature to better understand jellyfish blooms.
Citation: Florian Rupp, Jürgen Scheurle. Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion. Conference Publications, 2013, 2013 (special) : 663-672. doi: 10.3934/proc.2013.2013.663
References:
[1]

A. Bakun and S. J. Weeks, Adverse feedback sequences in exploited marine systems: are deliberate interruptive actions warranted?,, Fish and Fisheries, 7 (2006), 316.

[2]

M.J. Gibbons and A.J. Richardson, Patterns of jellyfish abundance in the north atlantic,, Hydrobiologia, 616 (2009), 51.

[3]

M. Haraldsson, K. Tönnesson, P. Tiselius, T.F. Thingstad and D.L. Aksnes, Relationship between fish and jellyfish as a function of eutrophication and water clarity,, Marine Ecology Progress Series, 471 (2012), 73.

[4]

T. Legovic, A recent increase in jellyfish populations: a predator-prey model and its implications,, Ecological Modelling, 38 (1987), 243.

[5]

C.H. Lucas, Population dynamics of aurelia aurita (scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction,, J. Plankton Research, 18 (1996), 987.

[6]

M. Kawahara, S. Uye, K. Ohtsu, and H. Iizumi, Unusual population explosion of the giant jellyfish nemopilema nomurai (scyphozoa: rhizostomeae) in east asian waters,, Marine Ecology Progress Series, 307 (2006), 161.

[7]

A. Malej and M. Malej, Population dynamics of the jellyfish pelagia noctiluca,, in, (1992), 215.

[8]

C.E. Mills, Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?,, Hydrobiologia, 451 (2001), 55.

[9]

C. Möllmann, B. Müller-Karulis, G. Kornilovs, and M.A. St John, Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem,, ICES J. Marine Sciences, 65 (2008), 302.

[10]

A.S. Nielsen, A.W. Pedersen, and H.U. Riisgard, Implications of density driven currents for interaction between jellyfish (aurelia aurita) and zooplankton in a danish fjord,, Sarsia, 82 (1997), 297.

[11]

N.J. Olesen, K. Frandsen, and H.U. Riisgard, Population dynamics, growth and energetics of jellyfish aurelia aurita in a shallow fjord,, Marine Ecology Progress Series, 105 (1994), 9.

[12]

M.L.D. Palomares and D. Pauly, The growth of jellyfishes,, Hydrobiologica, 616 (2009), 11.

[13]

K.A. Pitt, K. Koop, D. Rissik, and M.J. Kingsford, The ecology of scyphozoan jellyfish in lake illawara,, Wetlands (Australia), 21 (2004), 118.

[14]

A.J. Richardson, A. Bakun, G.C. Hays, and M.J. Gibbons, The jellyfish joyride: causes, consequences and management responses to a more gelatinous future,, Trends in Ecology and Evolution, 24 (2009), 312.

[15]

H.U. Riisgard, C.V. Madsen, C. Barth-Jensen, and J.E. Purcell, Population dynamics and zooplankton-predation impact of the indigenous scyphozoan aurelia aurita and the invasive ctenophore mnemiopsis leidyi in limfjorden (Denmark),, Aquatic Invasions, 7 (2011), 147.

[16]

S. Uye, Human forcing of the copepod-fish-jellyfish triangular trophic relationship,, Hydrobiologia, 666 (2011), 71.

[17]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems & Chaos,, Springer (1990)., (1990).

show all references

References:
[1]

A. Bakun and S. J. Weeks, Adverse feedback sequences in exploited marine systems: are deliberate interruptive actions warranted?,, Fish and Fisheries, 7 (2006), 316.

[2]

M.J. Gibbons and A.J. Richardson, Patterns of jellyfish abundance in the north atlantic,, Hydrobiologia, 616 (2009), 51.

[3]

M. Haraldsson, K. Tönnesson, P. Tiselius, T.F. Thingstad and D.L. Aksnes, Relationship between fish and jellyfish as a function of eutrophication and water clarity,, Marine Ecology Progress Series, 471 (2012), 73.

[4]

T. Legovic, A recent increase in jellyfish populations: a predator-prey model and its implications,, Ecological Modelling, 38 (1987), 243.

[5]

C.H. Lucas, Population dynamics of aurelia aurita (scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction,, J. Plankton Research, 18 (1996), 987.

[6]

M. Kawahara, S. Uye, K. Ohtsu, and H. Iizumi, Unusual population explosion of the giant jellyfish nemopilema nomurai (scyphozoa: rhizostomeae) in east asian waters,, Marine Ecology Progress Series, 307 (2006), 161.

[7]

A. Malej and M. Malej, Population dynamics of the jellyfish pelagia noctiluca,, in, (1992), 215.

[8]

C.E. Mills, Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?,, Hydrobiologia, 451 (2001), 55.

[9]

C. Möllmann, B. Müller-Karulis, G. Kornilovs, and M.A. St John, Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem,, ICES J. Marine Sciences, 65 (2008), 302.

[10]

A.S. Nielsen, A.W. Pedersen, and H.U. Riisgard, Implications of density driven currents for interaction between jellyfish (aurelia aurita) and zooplankton in a danish fjord,, Sarsia, 82 (1997), 297.

[11]

N.J. Olesen, K. Frandsen, and H.U. Riisgard, Population dynamics, growth and energetics of jellyfish aurelia aurita in a shallow fjord,, Marine Ecology Progress Series, 105 (1994), 9.

[12]

M.L.D. Palomares and D. Pauly, The growth of jellyfishes,, Hydrobiologica, 616 (2009), 11.

[13]

K.A. Pitt, K. Koop, D. Rissik, and M.J. Kingsford, The ecology of scyphozoan jellyfish in lake illawara,, Wetlands (Australia), 21 (2004), 118.

[14]

A.J. Richardson, A. Bakun, G.C. Hays, and M.J. Gibbons, The jellyfish joyride: causes, consequences and management responses to a more gelatinous future,, Trends in Ecology and Evolution, 24 (2009), 312.

[15]

H.U. Riisgard, C.V. Madsen, C. Barth-Jensen, and J.E. Purcell, Population dynamics and zooplankton-predation impact of the indigenous scyphozoan aurelia aurita and the invasive ctenophore mnemiopsis leidyi in limfjorden (Denmark),, Aquatic Invasions, 7 (2011), 147.

[16]

S. Uye, Human forcing of the copepod-fish-jellyfish triangular trophic relationship,, Hydrobiologia, 666 (2011), 71.

[17]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems & Chaos,, Springer (1990)., (1990).

[1]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[2]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[3]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[4]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[5]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[6]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515

[7]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[8]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[9]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[10]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[11]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[12]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[13]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[14]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[15]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[16]

B. E. Ainseba, W. E. Fitzgibbon, M. Langlais, J. J. Morgan. An application of homogenization techniques to population dynamics models. Communications on Pure & Applied Analysis, 2002, 1 (1) : 19-33. doi: 10.3934/cpaa.2002.1.19

[17]

Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producer-scrounger model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1591-1607. doi: 10.3934/dcdsb.2015.20.1591

[18]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[19]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[20]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]