2013, 2013(special): 643-652. doi: 10.3934/proc.2013.2013.643

Parameter dependent stability/instability in a human respiratory control system model

1. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, United States

2. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75083, United States

Received  September 2012 Published  November 2013

In this paper a computational procedure is presented to study the development of stable/unstable patterns in a system of three nonlinear, parameter dependent delay differential equations with two transport delays representing a simplified model of human respiration. It is demonstrated using simulations how sequences of changes in internal and external parameter values can lead to complex dynamic behavior due to forced transitions between stable/unstable equilibrium positions determined by particular parameter combinations. Since changes in the transport delays only influence the stability/instability of an equilibrium position a stability chart is constructed in that case by finding the roots of the characteristic equation of the corresponding linear variational system. Illustrative examples are included.
Citation: Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643
References:
[1]

D. Breda, S. Maset and R. Vermiglio, TRACE-DDE:a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations,, Topics in Time Delay Systems: Analysis, 388 (2009), 145.

[2]

K. L. Cooke, and J. Turi, Stability, instability in delay equations modeling human respiration,, J. Math. Biol., 32 (1994), 535.

[3]

I. Őri, F. Hartung, and J. Turi, Numerical approximations for a class of differential equations with time- and state-dependent delays,, Applied Math. Letters, 8:6 (1995), 19.

[4]

F. Hartung, and J. Turi, Parameter identification in a Respiratory Control System Model,, to appear in, (2012).

[5]

M. C. K. Khoo, A. Gottschalk and A. I. Pack, Sleep-induced periodic breathing and apnea:a theoritical study, American Physiological Society, (1991), 2014.

[6]

M. C. K. Khoo, R. E. Kronauer, K. P. Strohl, and A. S. Slutsky, Factors inducing periodic breathingin humans: a general model, American Physiological Society, (1992), 644.

[7]

L. E. Kollar, and J. Turi, Numerical Stability Analysis in Respiratory Control System Models,, Electronic Journal of Differential Equations, 12 (2005), 65.

[8]

G. S. Longobardo, N. S. Cherniak and A. P. Fishman, Cheyne-Stokes breathing produced by a model of the human respiratory system,, Journal of Applied Physiology, 21(6) (1966).

[9]

G. B Longobardo, M. D. Goldman, and N. S. Cherniack, Sleep apnea considered as a control system instability,, Respiratory Physiology, 50 (1982), 311.

[10]

M. C. Mackey, and L. Glass, Oscillation and Chaos in Physiological Control Systems,, Science, 197 (1977), 287.

[11]

S. P. Pradhan, The role of peripheral and central chemoreceptors in the stability of the human respiratory system,, (Doctoral dissertation), (2010).

[12]

J. B. West, Respiratory Physiology The Essentials,, Lippincott Williams and Wilkins, (2005).

show all references

References:
[1]

D. Breda, S. Maset and R. Vermiglio, TRACE-DDE:a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations,, Topics in Time Delay Systems: Analysis, 388 (2009), 145.

[2]

K. L. Cooke, and J. Turi, Stability, instability in delay equations modeling human respiration,, J. Math. Biol., 32 (1994), 535.

[3]

I. Őri, F. Hartung, and J. Turi, Numerical approximations for a class of differential equations with time- and state-dependent delays,, Applied Math. Letters, 8:6 (1995), 19.

[4]

F. Hartung, and J. Turi, Parameter identification in a Respiratory Control System Model,, to appear in, (2012).

[5]

M. C. K. Khoo, A. Gottschalk and A. I. Pack, Sleep-induced periodic breathing and apnea:a theoritical study, American Physiological Society, (1991), 2014.

[6]

M. C. K. Khoo, R. E. Kronauer, K. P. Strohl, and A. S. Slutsky, Factors inducing periodic breathingin humans: a general model, American Physiological Society, (1992), 644.

[7]

L. E. Kollar, and J. Turi, Numerical Stability Analysis in Respiratory Control System Models,, Electronic Journal of Differential Equations, 12 (2005), 65.

[8]

G. S. Longobardo, N. S. Cherniak and A. P. Fishman, Cheyne-Stokes breathing produced by a model of the human respiratory system,, Journal of Applied Physiology, 21(6) (1966).

[9]

G. B Longobardo, M. D. Goldman, and N. S. Cherniack, Sleep apnea considered as a control system instability,, Respiratory Physiology, 50 (1982), 311.

[10]

M. C. Mackey, and L. Glass, Oscillation and Chaos in Physiological Control Systems,, Science, 197 (1977), 287.

[11]

S. P. Pradhan, The role of peripheral and central chemoreceptors in the stability of the human respiratory system,, (Doctoral dissertation), (2010).

[12]

J. B. West, Respiratory Physiology The Essentials,, Lippincott Williams and Wilkins, (2005).

[1]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[2]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[3]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[4]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[5]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[6]

Laurenz Göllmann, Helmut Maurer. Optimal control problems with time delays: Two case studies in biomedicine. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1137-1154. doi: 10.3934/mbe.2018051

[7]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[8]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[9]

Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343

[10]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[11]

Jinggui Gao, Xiaoyan Zhao, Jinggang Zhai. Optimal control of microbial fed-batch culture involving multiple feeds. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 339-349. doi: 10.3934/naco.2015.5.339

[12]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207

[13]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[14]

Jianjun Paul Tian, Shu Liao, Jin Wang. Analyzing the infection dynamics and control strategies of cholera. Conference Publications, 2013, 2013 (special) : 747-757. doi: 10.3934/proc.2013.2013.747

[15]

Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257

[16]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[17]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[18]

Tehuan Chen, Chao Xu, Zhigang Ren. Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1251-1269. doi: 10.3934/jimo.2018052

[19]

Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial & Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505

[20]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]