2013, 2013(special): 629-641. doi: 10.3934/proc.2013.2013.629

Liapunov-type integral inequalities for higher order dynamic equations on time scales

1. 

Department of Mathematics and Statistics, University of Hyderabad, Hyderabad-500 046, India

Received  August 2012 Revised  November 2012 Published  November 2013

In this paper, we obtain Liapunov-type integral inequalities for certain nonlinear, nonhomogeneous dynamic equations of higher order without any restriction on the zeros of their higher-order delta derivatives of solutions by using time scale analysis. As an applications of our results, we show that oscillatory solutions of the equation converge to zero as $t\to \infty$. Using these inequalities, it is also shown that $(t_{m+ k} - t_{m}) \to \infty $ as $m \to \infty$, where $1 \le k \le n-1$ and $\langle t_m \rangle $ is an increasing sequence of generalized zeros of an oscillatory solution of $ D^n y + y f(t, y(\sigma(t)))|y(\sigma(t))|^{p-2} = 0$, $t \ge 0$, provided that $W(., \lambda) \in L^{\mu}([0, \infty)_{\mathbb{T}}, \mathbb{R}^{+})$, $1 \le \mu \le \infty$ and for all $\lambda > 0$. A criterion for disconjugacy of nonlinear homogeneous dynamic equation is obtained in an interval $[a, \sigma(b)]_{\mathbb{T}}$.
Citation: Saroj Panigrahi. Liapunov-type integral inequalities for higher order dynamic equations on time scales. Conference Publications, 2013, 2013 (special) : 629-641. doi: 10.3934/proc.2013.2013.629
References:
[1]

R. P. Agarwal, M. Bohner and Peterson, Inequalities on time scales: A Survey,, Math. Ineq. Appl., 4 (2001), 535.

[2]

E. Akin, Boundary value problem for a differential equation on a measure chain,, Panamer. Math. J. 10 (3) (2000), 10 (2000), 17.

[3]

M. Bohner, A.Peterson, " Advances in Dynamic Equations on Time Scale,", Birkhaüser, (2002).

[4]

M. Bohner, S. Clark, J. Ridenhour, Liapunov inequalities for time scales,, J. of Inequal. Appl.7 (1) (2002), 7 (2002), 61.

[5]

R. C. Brown, D. B. Hinton, Opial's inequality and oscillation of 2nd order equations,, Proc. Amer. Math. Soc. 125 (1997), 125 (1997), 1123.

[6]

S. S. Cheng, A discrete analogue of the inequality of Liapunov,, Hokkaido Math J. 12 (1983), 12 (1983), 105.

[7]

S. S. Cheng, Liapunov inequalities for differential and difference equations,, Fasc. Math. 23 (1991), 23 (1991), 25.

[8]

R. S. Dahiya, B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations,, J. Math. Phys. Sci. 7 (1973), 7 (1973), 163.

[9]

S. B. Eliason, A Liapunov inequality,, J. Math. Anal. Appl. 32 (1972), 32 (1972), 461.

[10]

S. B. Eliason, A Liapunov inequality for a certain nonlinear differential equation,, J. London Math. Soc. 2 (1970), 2 (1970), 461.

[11]

S. B. Eliason, A Liapunov inequalities for certain second order functional differential equations,, SIAM J. Appl. Math.27 (1) (1974), 27 (1974), 180.

[12]

P. Hartman, "Ordinary Differential Equations,", Wiley, (1964).

[13]

S. Hilger, Ein MaβKettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten ,, Ph. D. Thesis, (1988).

[14]

A. M. Liapunov, Probleme général de la stabilité du mouvment,, (French translation of Russian paper dated 1893), 2 (1907).

[15]

B. G. Pachpatte, On Liapunov-type inequalities for certain higher order differential equations,, J. Math. Anal. Appl. 195 (1995), 195 (1995), 527.

[16]

N. Parhi, S. Panigrahi, On Liapunov-type inequality for third order differential equations,, J. Math. Anal. Appl. 233 (2) (1999), 233 (1999), 445.

show all references

References:
[1]

R. P. Agarwal, M. Bohner and Peterson, Inequalities on time scales: A Survey,, Math. Ineq. Appl., 4 (2001), 535.

[2]

E. Akin, Boundary value problem for a differential equation on a measure chain,, Panamer. Math. J. 10 (3) (2000), 10 (2000), 17.

[3]

M. Bohner, A.Peterson, " Advances in Dynamic Equations on Time Scale,", Birkhaüser, (2002).

[4]

M. Bohner, S. Clark, J. Ridenhour, Liapunov inequalities for time scales,, J. of Inequal. Appl.7 (1) (2002), 7 (2002), 61.

[5]

R. C. Brown, D. B. Hinton, Opial's inequality and oscillation of 2nd order equations,, Proc. Amer. Math. Soc. 125 (1997), 125 (1997), 1123.

[6]

S. S. Cheng, A discrete analogue of the inequality of Liapunov,, Hokkaido Math J. 12 (1983), 12 (1983), 105.

[7]

S. S. Cheng, Liapunov inequalities for differential and difference equations,, Fasc. Math. 23 (1991), 23 (1991), 25.

[8]

R. S. Dahiya, B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations,, J. Math. Phys. Sci. 7 (1973), 7 (1973), 163.

[9]

S. B. Eliason, A Liapunov inequality,, J. Math. Anal. Appl. 32 (1972), 32 (1972), 461.

[10]

S. B. Eliason, A Liapunov inequality for a certain nonlinear differential equation,, J. London Math. Soc. 2 (1970), 2 (1970), 461.

[11]

S. B. Eliason, A Liapunov inequalities for certain second order functional differential equations,, SIAM J. Appl. Math.27 (1) (1974), 27 (1974), 180.

[12]

P. Hartman, "Ordinary Differential Equations,", Wiley, (1964).

[13]

S. Hilger, Ein MaβKettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten ,, Ph. D. Thesis, (1988).

[14]

A. M. Liapunov, Probleme général de la stabilité du mouvment,, (French translation of Russian paper dated 1893), 2 (1907).

[15]

B. G. Pachpatte, On Liapunov-type inequalities for certain higher order differential equations,, J. Math. Anal. Appl. 195 (1995), 195 (1995), 527.

[16]

N. Parhi, S. Panigrahi, On Liapunov-type inequality for third order differential equations,, J. Math. Anal. Appl. 233 (2) (1999), 233 (1999), 445.

[1]

Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050

[2]

Sung Kyu Choi, Namjip Koo. Stability of linear dynamic equations on time scales. Conference Publications, 2009, 2009 (Special) : 161-170. doi: 10.3934/proc.2009.2009.161

[3]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[4]

Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223

[5]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[6]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[7]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[8]

Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553

[9]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[10]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[11]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[12]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[13]

Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114

[14]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[15]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[16]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[17]

Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167

[18]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[19]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[20]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]