• Previous Article
    Efficient recurrence relations for univariate and multivariate Taylor series coefficients
  • PROC Home
  • This Issue
  • Next Article
    Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum
2013, 2013(special): 597-603. doi: 10.3934/proc.2013.2013.597

Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response

1. 

Department of Applied Mathematics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received  September 2012 Revised  March 2013 Published  November 2013

This paper is concerned with the steady state problem of a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. A sufficient condition for the existence of positive steady state solutions is given. Our proof is based on the bifurcation theory and some a priori estimates.
Citation: Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equations II: Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13.

[2]

Y.S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.

[3]

M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.

[4]

Y. Du and X. Liang, A diffusive competition model with a protection zone,, J. Differential Equations, 244 (2008), 61.

[5]

Y. Du, R. Peng and M.X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equations, 246 (2009), 3932.

[6]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.

[7]

J. López-Gómez, "Spectral Theory and Nonlinear Functional Analysis,", Research Notes in Mathematics, (2001).

[8]

Y. Lou and W.M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.

[9]

Y. Lou, W.M. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.

[10]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.

[11]

K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone,, Adv. Math. Sci. Appl., 22 (2012), 501.

[12]

P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.

[13]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83.

[14]

P.V. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933.

[15]

X. Zou and K. Wang, The protection zone of biological population,, Nonlinear Anal. RWA, 12 (2011), 956.

[16]

X. Zou and K. Wang, A robustness analysis of biological population models with protection zone,, Applied Mathematical Modelling, 35 (2011), 5553.

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equations II: Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13.

[2]

Y.S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.

[3]

M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.

[4]

Y. Du and X. Liang, A diffusive competition model with a protection zone,, J. Differential Equations, 244 (2008), 61.

[5]

Y. Du, R. Peng and M.X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equations, 246 (2009), 3932.

[6]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.

[7]

J. López-Gómez, "Spectral Theory and Nonlinear Functional Analysis,", Research Notes in Mathematics, (2001).

[8]

Y. Lou and W.M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.

[9]

Y. Lou, W.M. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.

[10]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.

[11]

K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone,, Adv. Math. Sci. Appl., 22 (2012), 501.

[12]

P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.

[13]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83.

[14]

P.V. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933.

[15]

X. Zou and K. Wang, The protection zone of biological population,, Nonlinear Anal. RWA, 12 (2011), 956.

[16]

X. Zou and K. Wang, A robustness analysis of biological population models with protection zone,, Applied Mathematical Modelling, 35 (2011), 5553.

[1]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[2]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[3]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[4]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018073

[5]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[6]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[7]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[8]

Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221

[9]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[10]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[11]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[12]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[13]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[14]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[15]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[16]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response . Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[17]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[18]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[19]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[20]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]