
Previous Article
A discontinuous Galerkin leastsquares finite element method for solving Fisher's equation
 PROC Home
 This Issue

Next Article
Intricate bifurcation diagrams for a class of onedimensional superlinear indefinite problems of interest in population dynamics
Discretizing spherical integrals and its applications
1.  Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China, China 
2.  Department of Mathematics, Missouri State University, Springeld, MO 65810, United States 
References:
show all references
References:
[1] 
Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 10631079. doi: 10.3934/krm.2011.4.1063 
[2] 
Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear FredholmVolterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 7788. doi: 10.3934/naco.2017004 
[3] 
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131149. doi: 10.3934/amc.2007.1.131 
[4] 
AnneSophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 9911015. doi: 10.3934/cpaa.2014.13.991 
[5] 
Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310318. doi: 10.3934/proc.2001.2001.310 
[6] 
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119130. doi: 10.3934/era.2011.18.119 
[7] 
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 20472051. doi: 10.3934/cpaa.2017100 
[8] 
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243252. doi: 10.3934/ipi.2013.7.243 
[9] 
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373382. doi: 10.3934/ipi.2009.3.373 
[10] 
Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279292. doi: 10.3934/amc.2013.7.279 
[11] 
Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569585. doi: 10.3934/cpaa.2007.6.569 
[12] 
François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 12591282. doi: 10.3934/dcds.2010.27.1259 
[13] 
Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete & Continuous Dynamical Systems  B, 2014, 19 (8) : 24172423. doi: 10.3934/dcdsb.2014.19.2417 
[14] 
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 11891208. doi: 10.3934/cpaa.2010.9.1189 
[15] 
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 123. doi: 10.3934/krm.2018001 
[16] 
Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111131. doi: 10.3934/ipi.2012.6.111 
[17] 
Torsten Görner, Ralf Hielscher, Stefan Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Inverse Problems & Imaging, 2012, 6 (4) : 645661. doi: 10.3934/ipi.2012.6.645 
[18] 
Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete & Continuous Dynamical Systems  B, 2011, 15 (4) : 10451064. doi: 10.3934/dcdsb.2011.15.1045 
[19] 
Rola Kiwan, Ahmad El Soufi. Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Communications on Pure & Applied Analysis, 2008, 7 (5) : 11931201. doi: 10.3934/cpaa.2008.7.1193 
[20] 
Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207225. doi: 10.3934/jgm.2017009 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]