# American Institute of Mathematical Sciences

2013, 2013(special): 489-497. doi: 10.3934/proc.2013.2013.489

## A discontinuous Galerkin least-squares finite element method for solving Fisher's equation

 1 Department of Engineering, Mathematics, and Physics, Texas A&M International University, Laredo, TX 78041 2 Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406

Received  September 2012 Revised  January 2013 Published  November 2013

In the present study, a discontinuous Galerkin least-squares finite element algorithm is developed to solve Fisher's equation. The present method is effective and can be successfully applied to problems with strong reaction, to which obtaining stable and accurate numerical traveling wave solutions is challenging. Numerical results are given to demonstrate the convergence rates of the method and the performance of the algorithm in long-time integrations.
Citation: Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489
##### References:
 [1] M.J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835. [2] K. Al-Khaled, Numerical study of Fishers reaction-diffusion equation by the sinc collocation method,, J. Comput. Appl. Math., 137 (2001), 245. [3] J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307. [4] G.F. Carey and Y. Shen, Least-squares finite element approximation of Fishers reactiondiffusion equation,, Numer. Methods Partial Differential Equations, 11 (1995), 175. [5] I. Daǧ, A. Şahin, and A. Korkmaz, Numerical investigation of the solution of Fisher's equation via the B-spline Galerkin method,, Numer. Methods Partial Differential Equations 26 (2010), 26 (2010), 1483. [6] R.A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. [7] J. Gazdag and J. Canosa, Numerical solution of Fisher's equation,, J. Appl. Probab., 11 (1974), 445. [8] B.Y. Guo and Z.X. Chen, Analytic solutions of the Fisher equation,, J. Phys. A, 24 (1991), 645. [9] P.S. Hagan, Traveling wave and multiple traveling wave solutions of parabolic equations,, SIAM J. Math. Anal. 13 (1982), 13 (1982), 717. [10] T. Hagstrom and H.B. Keller, The numerical calculation of traveling wave solutions of nonlinear parabolic equations,, SIAM J. Sci. Statist. Comput., 7 (1986), 978. [11] A. Kolmogorov, I. Petrovshy, and N. Piscounoff, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. Etat Moscou Ser. Int. Sect. A Math. et Mecan., 1 (1937), 1. [12] D.A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math. 34 (1978), 34 (1978), 93. [13] S. Li, L. Petzold, and Y. Ren, Stability of moving mesh systems of partial differential equations,, SIAM J. Sci. Comput., 20 (1998), 719. [14] R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions,, SIAM J. Numer. Anal. 47 (2008/09), 47 (): 89. [15] R. Lin, Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities,, Numer. Math. 112 (2009), 112 (2009), 295. [16] J.D. Logan, "An introduction to nonlinear partial differential equations,'', second edition, (2008). [17] R.E. Mickens, A best finite-difference scheme for the Fisher equation,, Numer. Methods Partial Differential Equations 10 (1994), 10 (1994), 581. [18] J.D. Murray, "Mathematical biology,'', Biomathematics, 19 (1989). [19] D. Olmos and B.D. Shizgal, A pseudospectral method of solution of Fisher's equation,, J. Comput. Appl. Math., 193 (2006), 219. [20] N. Parekh and S. Puri, A new numerical scheme for the Fisher equation,, J. Phys. A: Math. Gen., 23 (1990). [21] Y. Qiu and D.M. Sloan, Numerical solution of Fisher's equation using a moving mesh method,, J. Comput. Phys., 146 (1998), 726. [22] Rizwan-uddin, Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation,, SIAM. J. Sci. Comput., 22 (2000), 1926. [23] J. Roessler and H. Hüssner, Numerical solution of the $1+2$ dimensional Fisher's equation by finite elements and the Galerkin method,, Math. Comput. Modelling, 25 (1997), 57. [24] S. Tang and R.O. Weber, Numerical study of Fisher's equation by a Petrov-Galerkin finite element method,, J. Austral. Math. Soc. Sci. B, 33 (1991), 27. [25] V. Thomée, "Galerkin finite element methods for parabolic problems,'', second edition, (2006). [26] S. Zhao and G.W. Wei, Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation,, SIAM J. Sci. Comput., 25 (2003), 127.

show all references

##### References:
 [1] M.J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835. [2] K. Al-Khaled, Numerical study of Fishers reaction-diffusion equation by the sinc collocation method,, J. Comput. Appl. Math., 137 (2001), 245. [3] J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307. [4] G.F. Carey and Y. Shen, Least-squares finite element approximation of Fishers reactiondiffusion equation,, Numer. Methods Partial Differential Equations, 11 (1995), 175. [5] I. Daǧ, A. Şahin, and A. Korkmaz, Numerical investigation of the solution of Fisher's equation via the B-spline Galerkin method,, Numer. Methods Partial Differential Equations 26 (2010), 26 (2010), 1483. [6] R.A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. [7] J. Gazdag and J. Canosa, Numerical solution of Fisher's equation,, J. Appl. Probab., 11 (1974), 445. [8] B.Y. Guo and Z.X. Chen, Analytic solutions of the Fisher equation,, J. Phys. A, 24 (1991), 645. [9] P.S. Hagan, Traveling wave and multiple traveling wave solutions of parabolic equations,, SIAM J. Math. Anal. 13 (1982), 13 (1982), 717. [10] T. Hagstrom and H.B. Keller, The numerical calculation of traveling wave solutions of nonlinear parabolic equations,, SIAM J. Sci. Statist. Comput., 7 (1986), 978. [11] A. Kolmogorov, I. Petrovshy, and N. Piscounoff, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. Etat Moscou Ser. Int. Sect. A Math. et Mecan., 1 (1937), 1. [12] D.A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math. 34 (1978), 34 (1978), 93. [13] S. Li, L. Petzold, and Y. Ren, Stability of moving mesh systems of partial differential equations,, SIAM J. Sci. Comput., 20 (1998), 719. [14] R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions,, SIAM J. Numer. Anal. 47 (2008/09), 47 (): 89. [15] R. Lin, Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities,, Numer. Math. 112 (2009), 112 (2009), 295. [16] J.D. Logan, "An introduction to nonlinear partial differential equations,'', second edition, (2008). [17] R.E. Mickens, A best finite-difference scheme for the Fisher equation,, Numer. Methods Partial Differential Equations 10 (1994), 10 (1994), 581. [18] J.D. Murray, "Mathematical biology,'', Biomathematics, 19 (1989). [19] D. Olmos and B.D. Shizgal, A pseudospectral method of solution of Fisher's equation,, J. Comput. Appl. Math., 193 (2006), 219. [20] N. Parekh and S. Puri, A new numerical scheme for the Fisher equation,, J. Phys. A: Math. Gen., 23 (1990). [21] Y. Qiu and D.M. Sloan, Numerical solution of Fisher's equation using a moving mesh method,, J. Comput. Phys., 146 (1998), 726. [22] Rizwan-uddin, Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation,, SIAM. J. Sci. Comput., 22 (2000), 1926. [23] J. Roessler and H. Hüssner, Numerical solution of the $1+2$ dimensional Fisher's equation by finite elements and the Galerkin method,, Math. Comput. Modelling, 25 (1997), 57. [24] S. Tang and R.O. Weber, Numerical study of Fisher's equation by a Petrov-Galerkin finite element method,, J. Austral. Math. Soc. Sci. B, 33 (1991), 27. [25] V. Thomée, "Galerkin finite element methods for parabolic problems,'', second edition, (2006). [26] S. Zhao and G.W. Wei, Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation,, SIAM J. Sci. Comput., 25 (2003), 127.
 [1] JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305 [2] H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175 [3] Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216 [4] Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139 [5] Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817 [6] Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 [7] Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 [8] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339 [9] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [10] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [11] Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154 [12] Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051 [13] Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 [14] Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153 [15] Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 [16] Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387 [17] So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343 [18] Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052 [19] Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 [20] Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

Impact Factor: