• Previous Article
    Optimal control of a linear stochastic Schrödinger equation
  • PROC Home
  • This Issue
  • Next Article
    Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity
2013, 2013(special): 447-456. doi: 10.3934/proc.2013.2013.447

Quasi-subdifferential operators and evolution equations

1. 

Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555

Received  August 2012 Revised  December 2012 Published  November 2013

We introduce the concept of a quasi-subdifferential operator and that of a quasi-subdifferential evolution equation. We prove the existence of solutions to related problems and give applications to variational and quasi-variational inequalities.
Citation: Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447
References:
[1]

T. Aiki, Mathematical models including a hysteresis operator,, in, 71 (2006), 1.

[2]

H. Attouch, Familles d'operateurs maximaux monotones et mesurabilite,, Ann. Mat. Pura Appl. 120 (1979), 120 (1979), 35.

[3]

H. Attouch, P. Bénilan, A. Damlamian, C. Picard, Equations d'évolution avec condition unilatérale,, C. R. Acad. Sci. Paris Ser. A, 279 (1974), 607.

[4]

C. Baiocchi and A. Capelo, "Variational and quasivariational inequalities",, Wiley-Interscience, (1984).

[5]

H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriel en dualité,, Ann. Inst. Fourier, 18 (1968), 115.

[6]

H. Brézis, Problèmes unilatéraux,, J. Math. Pure Appl. IX. Ser., 51 (1972), 1.

[7]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert",, North-Holland, (1973).

[8]

F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces,, J. Funct. Anal., 11 (1972), 251.

[9]

P. Colli, N. Kenmochi and M. Kubo, A phase-field model with temperature dependent constraint,, J. Math. Anal. Appl., 256 (2001), 668.

[10]

J.-L. Joly and U. Mosco, À propos de l'existence et de la régularité des solutions de certaines inéquations quasi-variationnelles,, J. Funct. Anal., 34 (1979), 107.

[11]

R. Kano, N. Kenmochi and Y. Murase, Elliptic quasi-variational inequalities and applications,, Discrete Contin. Dyn. Syst., 2009 (2009), 583.

[12]

R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with nonlocal constraints,, Adv. Math. Sci. Appl., 19 (2009), 565.

[13]

R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints, Banach Center Publ., 86 (2009), 175.

[14]

N. Kenmochi, Some nonlinear parabolic variational inequalities,, Israel J. Math., 22 (1975), 304.

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ., 30 (1981), 1.

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in, (2007).

[17]

N. Kenmochi, T. Koyama and G.H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities,, Nonlinear Anal., 34 (1998), 665.

[18]

N. Kenmochi and M. Kubo, Periodic stability of flow in partially saturated porous media,, in ''Free Boundary Value Problems, 95 (1990), 127.

[19]

M. Kubo, Characterization of a class of evolution operators generated by time-dependent subdifferentials,, Funkc. Ekvacioj, 32 (1989), 301.

[20]

M. Kubo, A filtration model with hysteresis,, J. Differ. Equations, 201 (2004), 75.

[21]

M. Kubo and N. Yamazaki, Quasilinear parabolic variational inequalities with time-dependent constraints,, Adv. Math. Sci. Appl., 15 (2005), 60.

[22]

M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with time-dependent constraints,, Discrete Contin. Dyn. Syst., 19 (2007), 335.

[23]

M. Kubo, K. Shirakawa and N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations,, J. Math. Anal. Appl., 387 (2012), 490.

[24]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators , J. Differential Equations, 46 (1982), 268.

[25]

M. Ôtani, Nonlinear evolution equations with time-dependent constarints , Adv. Math. Sci. Appl., 3 (): 383.

[26]

A. Visintin, "Differential models of hysteresis",, Springer-Verlag, (1994).

[27]

N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems,, Discrete Contin. Dyn. Syst., 2005 (2005), 920.

[28]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 23 (1976), 491.

show all references

References:
[1]

T. Aiki, Mathematical models including a hysteresis operator,, in, 71 (2006), 1.

[2]

H. Attouch, Familles d'operateurs maximaux monotones et mesurabilite,, Ann. Mat. Pura Appl. 120 (1979), 120 (1979), 35.

[3]

H. Attouch, P. Bénilan, A. Damlamian, C. Picard, Equations d'évolution avec condition unilatérale,, C. R. Acad. Sci. Paris Ser. A, 279 (1974), 607.

[4]

C. Baiocchi and A. Capelo, "Variational and quasivariational inequalities",, Wiley-Interscience, (1984).

[5]

H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriel en dualité,, Ann. Inst. Fourier, 18 (1968), 115.

[6]

H. Brézis, Problèmes unilatéraux,, J. Math. Pure Appl. IX. Ser., 51 (1972), 1.

[7]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert",, North-Holland, (1973).

[8]

F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces,, J. Funct. Anal., 11 (1972), 251.

[9]

P. Colli, N. Kenmochi and M. Kubo, A phase-field model with temperature dependent constraint,, J. Math. Anal. Appl., 256 (2001), 668.

[10]

J.-L. Joly and U. Mosco, À propos de l'existence et de la régularité des solutions de certaines inéquations quasi-variationnelles,, J. Funct. Anal., 34 (1979), 107.

[11]

R. Kano, N. Kenmochi and Y. Murase, Elliptic quasi-variational inequalities and applications,, Discrete Contin. Dyn. Syst., 2009 (2009), 583.

[12]

R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with nonlocal constraints,, Adv. Math. Sci. Appl., 19 (2009), 565.

[13]

R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints, Banach Center Publ., 86 (2009), 175.

[14]

N. Kenmochi, Some nonlinear parabolic variational inequalities,, Israel J. Math., 22 (1975), 304.

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ., 30 (1981), 1.

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in, (2007).

[17]

N. Kenmochi, T. Koyama and G.H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities,, Nonlinear Anal., 34 (1998), 665.

[18]

N. Kenmochi and M. Kubo, Periodic stability of flow in partially saturated porous media,, in ''Free Boundary Value Problems, 95 (1990), 127.

[19]

M. Kubo, Characterization of a class of evolution operators generated by time-dependent subdifferentials,, Funkc. Ekvacioj, 32 (1989), 301.

[20]

M. Kubo, A filtration model with hysteresis,, J. Differ. Equations, 201 (2004), 75.

[21]

M. Kubo and N. Yamazaki, Quasilinear parabolic variational inequalities with time-dependent constraints,, Adv. Math. Sci. Appl., 15 (2005), 60.

[22]

M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with time-dependent constraints,, Discrete Contin. Dyn. Syst., 19 (2007), 335.

[23]

M. Kubo, K. Shirakawa and N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations,, J. Math. Anal. Appl., 387 (2012), 490.

[24]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators , J. Differential Equations, 46 (1982), 268.

[25]

M. Ôtani, Nonlinear evolution equations with time-dependent constarints , Adv. Math. Sci. Appl., 3 (): 383.

[26]

A. Visintin, "Differential models of hysteresis",, Springer-Verlag, (1994).

[27]

N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems,, Discrete Contin. Dyn. Syst., 2005 (2005), 920.

[28]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 23 (1976), 491.

[1]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[2]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[3]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[4]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[5]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[6]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[7]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[8]

Augusto Visintin. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[9]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[10]

Matteo Bonforte, Gabriele Grillo. Singular evolution on maniforlds, their smoothing properties, and soboleve inequalities. Conference Publications, 2007, 2007 (Special) : 130-137. doi: 10.3934/proc.2007.2007.130

[11]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[12]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[13]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[14]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[15]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[16]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[17]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[18]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[19]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[20]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]