2013, 2013(special): 427-436. doi: 10.3934/proc.2013.2013.427

Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system

1. 

Department of Mathematics, Faculty of Education, Ehime University, Matsuyama, 790-8577

Received  August 2012 Revised  April 2013 Published  November 2013

In this paper, we consider a reaction-diffusion system which describes the dynamics of population density for a two competing species community, and discuss the structure on the set of radially symmetric positive stationary solutions for the system by assuming the habitat of the community to be a ball. To do this, we shall treat the dimension of the habitat and the diffusion rates of the system as bifurcation parameters, and employ the comparison principle and the implicit function theorem.
Citation: Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427
References:
[1]

A. Coddington and N. Levinson, "Theory of ordinary differential equations,'', McGraw-Hill, (1955).

[2]

J. K. Hale, "Asymptotic behavior of dissipative systems,'', Mathematical Surveys and Monographs \textbf{25}, 25 (1988).

[3]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, Japan J. Indust. Appl. Math., 13 (1996), 117.

[4]

Y. Kan-on, Existence of positive travelling waves for generic Lotka-Volterra competition model with diffusion,, Dynam. Contin. Discrete Impuls. Systems, 6 (1999), 345.

[5]

H. Kokubu, Homoclinic and heteroclinic bifurcations of vector fields,, Japan J. Appl. Math., 5 (1988), 455.

show all references

References:
[1]

A. Coddington and N. Levinson, "Theory of ordinary differential equations,'', McGraw-Hill, (1955).

[2]

J. K. Hale, "Asymptotic behavior of dissipative systems,'', Mathematical Surveys and Monographs \textbf{25}, 25 (1988).

[3]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, Japan J. Indust. Appl. Math., 13 (1996), 117.

[4]

Y. Kan-on, Existence of positive travelling waves for generic Lotka-Volterra competition model with diffusion,, Dynam. Contin. Discrete Impuls. Systems, 6 (1999), 345.

[5]

H. Kokubu, Homoclinic and heteroclinic bifurcations of vector fields,, Japan J. Appl. Math., 5 (1988), 455.

[1]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[2]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[3]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[4]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[5]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[6]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[7]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[8]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[9]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[10]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[12]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[13]

Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure & Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133

[14]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[15]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[16]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[17]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[18]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2018136

[19]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-29. doi: 10.3934/dcdsb.2018208

[20]

Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]