
Previous Article
Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion
 PROC Home
 This Issue

Next Article
Structure on the set of radially symmetric positive stationary solutions for a competitiondiffusion system
The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion
1.  Department of Mathematics, Tokyo City University, 1281 Tamazutsumi, Setagayaku, Tokyo 1588557, Japan 
2.  Department of Information Science, Tokyo City University, 1281 Tamazutsumi, Setagayaku, Tokyo 1588557, Japan 
References:
show all references
References:
[1] 
Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D GinzburgLandau type equation. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 507527. doi: 10.3934/dcdsb.2011.16.507 
[2] 
N. Maaroufi. Topological entropy by unit length for the GinzburgLandau equation on the line. Discrete & Continuous Dynamical Systems  A, 2014, 34 (2) : 647662. doi: 10.3934/dcds.2014.34.647 
[3] 
Jingna Li, Li Xia. The Fractional GinzburgLandau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 21732187. doi: 10.3934/cpaa.2013.12.2173 
[4] 
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex GinzburgLandau equation. Discrete & Continuous Dynamical Systems  A, 1999, 5 (4) : 871880. doi: 10.3934/dcds.1999.5.871 
[5] 
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the GinzburgLandau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665682. doi: 10.3934/cpaa.2005.4.665 
[6] 
Jun Yang. Vortex structures for KleinGordon equation with GinzburgLandau nonlinearity. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 23592388. doi: 10.3934/dcds.2014.34.2359 
[7] 
Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex GinzburgLandau equation. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 311341. doi: 10.3934/dcds.2010.28.311 
[8] 
SenZhong Huang, Peter Takáč. Global smooth solutions of the complex GinzburgLandau equation and their dynamical properties. Discrete & Continuous Dynamical Systems  A, 1999, 5 (4) : 825848. doi: 10.3934/dcds.1999.5.825 
[9] 
Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233240. doi: 10.3934/eect.2015.4.233 
[10] 
Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete & Continuous Dynamical Systems  A, 1998, 4 (4) : 783793. doi: 10.3934/dcds.1998.4.783 
[11] 
Michael Stich, Carsten Beta. Standing waves in a complex GinzburgLandau equation with timedelay feedback. Conference Publications, 2011, 2011 (Special) : 13291334. doi: 10.3934/proc.2011.2011.1329 
[12] 
Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative GinzburgLandau equation in two spatial dimensions. Discrete & Continuous Dynamical Systems  A, 1996, 2 (4) : 455466. doi: 10.3934/dcds.1996.2.455 
[13] 
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete GinzburgLandau equation. Discrete & Continuous Dynamical Systems  A, 2007, 19 (4) : 711736. doi: 10.3934/dcds.2007.19.711 
[14] 
Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multidimensional derivative complex GinzburgLandau equation. Kinetic & Related Models, 2014, 7 (1) : 5777. doi: 10.3934/krm.2014.7.57 
[15] 
Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional GinzburgLandau equation with multiplicative noise. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 575590. doi: 10.3934/dcdsb.2016.21.575 
[16] 
Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex GinzburgLandau equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (5) : 25392564. doi: 10.3934/dcds.2017109 
[17] 
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the acdriven complex GinzburgLandau equation. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 129141. doi: 10.3934/dcdsb.2010.14.129 
[18] 
O. Goubet, N. Maaroufi. Entropy by unit length for the GinzburgLandau equation on the line. A Hilbert space framework. Communications on Pure & Applied Analysis, 2012, 11 (3) : 12531267. doi: 10.3934/cpaa.2012.11.1253 
[19] 
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the nonautonomous quasilinear complex GinzburgLandau equation with $p$Laplacian. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 18011814. doi: 10.3934/dcdsb.2014.19.1801 
[20] 
Feng Zhou, Chunyou Sun. Dynamics for the complex GinzburgLandau equation on noncylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 37673792. doi: 10.3934/dcdsb.2016120 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]