
Previous Article
A unified approach to Matukuma type equations on the hyperbolic space or on a sphere
 PROC Home
 This Issue

Next Article
Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion
The characterization of maximal invariant sets of nonlinear discretetime control dynamical systems
1.  Department of Mathematics and Information Sciences, University of North Texas at Dallas, Dallas, TX 75241, United States 
2.  Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200  465 Porto, Portugal 
References:
show all references
References:
[1] 
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369380. doi: 10.3934/mbe.2015007 
[2] 
Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete & Continuous Dynamical Systems  A, 2000, 6 (3) : 651664. doi: 10.3934/dcds.2000.6.651 
[3] 
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 169186. doi: 10.3934/dcds.2011.30.169 
[4] 
Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 21452168. doi: 10.3934/dcdsb.2016041 
[5] 
Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 97136. doi: 10.3934/dcds.2016.36.97 
[6] 
Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems  A, 2001, 7 (1) : 91113. doi: 10.3934/dcds.2001.7.91 
[7] 
Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems  A, 2001, 7 (3) : 477486. doi: 10.3934/dcds.2001.7.477 
[8] 
Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113130. doi: 10.3934/amc.2016.10.113 
[9] 
Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems  A, 1996, 2 (1) : 111120. doi: 10.3934/dcds.1996.2.111 
[10] 
Heide GluesingLuerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177197. doi: 10.3934/amc.2015.9.177 
[11] 
Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 221238. doi: 10.3934/dcdss.2009.2.221 
[12] 
Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for nonLipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107124. doi: 10.3934/cpaa.2006.5.107 
[13] 
Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179189. doi: 10.3934/jcd.2016009 
[14] 
Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems  B, 2013, 18 (6) : 15331554. doi: 10.3934/dcdsb.2013.18.1533 
[15] 
Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reactiondiffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 4356. doi: 10.3934/eect.2012.1.43 
[16] 
XinGuo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785796. doi: 10.3934/naco.2012.2.785 
[17] 
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963970. doi: 10.3934/proc.2011.2011.963 
[18] 
Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 22132219. doi: 10.3934/cpaa.2012.11.2213 
[19] 
Igor Nazarov, BaiLian Li. Maximal sustainable yield in a multipatch habitat. Conference Publications, 2005, 2005 (Special) : 682691. doi: 10.3934/proc.2005.2005.682 
[20] 
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427439. doi: 10.3934/krm.2011.4.427 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]