• Previous Article
    A unified approach to Matukuma type equations on the hyperbolic space or on a sphere
  • PROC Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion
2013, 2013(special): 393-406. doi: 10.3934/proc.2013.2013.393

The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems

1. 

Department of Mathematics and Information Sciences, University of North Texas at Dallas, Dallas, TX 75241, United States

2. 

Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200 - 465 Porto, Portugal

Received  September 2012 Revised  March 2013 Published  November 2013

The main topic of this paper is the controllability/reachability problems of the maximal invariant sets of non-linear discrete-time multiple-valued iterative dynamical systems. We prove that the controllability/reachability problems of the maximal full-invariant sets of classical control dynamical systems are equivalent to those of the maximal quasi-invariant sets of disturbed control dynamical systems, when modeled by the iterative dynamics of multiple-valued self-maps. Also, we prove that the afore-mentioned maximal full-invariant sets and maximal quasi-invariant sets are countably infinite step controllable under some appropriate conditions. We take an abstract set theoretical approach, so that our main theorems remain valid regardless of the topological structure of the space or the analytical structure of the dynamics.
Citation: Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393
References:
[1]

E. Akin, "The General Topology of Dynamical Systems,", Graduate Studies in Mathematics, (1993).

[2]

Z. Artstein and S. Rakovic, Feedback invariance under uncertainty via set-iterates,, Automatica J. IFAC, 44 (2008), 520.

[3]

P. Ashwin, X. C. Fu, T. Nishikawa and K. Zyczkowski, Invariant sets for discontinuous parabolic area-preserving torus maps,, Nonlinearity, 13 (2000), 819.

[4]

P. Ashwin, X. C. Fu and J. R. Terry, Riddling and invariance for discontinuous maps preserving lebesgue measure,, Nonlinearity, 15 (2002), 633.

[5]

A. Bemporad, F. D. Torrisi and M. Morari, "Optimization-based verification and stability characterization of piecewise affine and hybrid systems,", in Proc. 3rd International Workshop on Hybrid Systems: Computation and Control, (2000).

[6]

D. Bertsekas, Infinite time reachability of state-space regions by using feedback control,, IEEE Transactions on Automatic Control, AC-17 (1972), 604.

[7]

F. Blanchini and S. Miani, "Set-Theoretic Methods in Control,", Systems & Control: Foundations & Applications, (2008).

[8]

T. Das, K. Lee and M. Lee, $c^1$-persistently continuum-wise expansive homoclinic classes and recurrent sets,, Topology and its Applications, 160 (2013), 350.

[9]

X. Fu, F. Chen and X. Zhao, Dynamical properties of 2-torus parabolic maps,, Nonlinear Dynamics, 50 (2007), 539.

[10]

X. Fu and J. Duan, Global attractors and invariant measures for non-invertible planar piecewise isometric maps,, Phys. Lett. A, 371 (2007), 285.

[11]

______, On global attractors for a class of nonhyperbolic piecewise affine maps,, Physica D, 237 (2008), 3369.

[12]

A. A. Julius and A. J. van der Schaft, The maximal controlled invariant set of switched linear systems,, Proc. 41st IEEE Conf. on Decision and Control, (2002), 3174.

[13]

B. Kahng, Chains of minimal image sets can attain arbitrary length until they reach maximal invariant sets,, preprint., ().

[14]

_______, The invariant set theory of multiple valued iterative dynamical systems,, in Recent Advances in System Science and Simulation in Engineering, 7 (2008), 19.

[15]

_______, Maximal invariant sets of multiple valued iterative dynamics in disturbed control systems,, Int. J. Circ. Sys. and Signal Processing, 2 (2008), 113.

[16]

_______, Positive invariance of multiple valued iterative dynamical systems in disturbed control models,, in, (2009), 663.

[17]

_______, Singularities of 2-dimensional invertible piecewise isometric dynamics,, Chaos, 19 (2009).

[18]

_______, The approximate control problems of the maximal invariant sets of non-linear discrete-time dis-turbed control dynamical systems: an algorithmic approach,, in Proc. Int. Conf. on Control and Auto. and Sys. Gyeonggi-do, (2010), 1513.

[19]

_______, Multiple valued iterative dynamics models of nonlinear discrete-time control dynamical systems with disturbance,, J. Korean Math. Soc., 50 (2013), 17.

[20]

E. Kerrigan, J. Lygeros and J. M. Maciejowski, "A Geometric Approach To Reachability Computations For Constrained Discrete-Time Systems,", in IFAC World Congress, (2002).

[21]

E. Kerrigan and J. M. Maciejowski, "Invariant Sets for Constrained Nonlinear Discrete-Time Systems with Application to Feasibility in Model Predictive Control,", in Proc. 39th IEEE Conf. on Decision and Control, (2000).

[22]

X. D. Koutsoukos and P. J. Antsaklis, Safety and reachability of piecewise-linear hybrid dynamical systems based on discrete abstractions,, J. Discr. Event Dynam. Sys., 13 (2003), 203.

[23]

K. Lee and M. Lee, Hyperbolicity of $c^1$-stably expansive homoclinic classes,, Discr. and Contin. Dynam. Sys., 27 (2010), 1133.

[24]

_______, Stably inverse shadowable transitive sets and dominated splitting,, Proc. Amer. Math. Soc., 140 (2012), 217.

[25]

K. Lee, K. Moriyasu and K. Sakai, $c^1$-stable shadowing diffeomorphisms,, Discr. and Contin. Dynam. Sys., 22 (2008), 683.

[26]

J. H. Lowenstein, G. Poggiaspalla and F. Vivaldi, Sticky orbits in a kicked-oscillator model,, Dynam. Sys., 20 (2005), 413.

[27]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality,, Automatica, 36 (2000), 789.

[28]

M. Mendes, "Dynamics of Piecewise Isometric Systems with Particular Emphasis to the Goetz Map,", Ph. D. Thesis, (2001).

[29]

_______, Quasi-invariant attractors of piecewise isometric systems,, Discr. Contin. Dynam. Sys., 9 (2003), 323.

[30]

C. J. Ong and E. G. Gilbert, Constrained linear systems with disturbances: Enlargement of their maximal invariant sets by nonlinear feedback,, (2006), (2006), 5246.

[31]

S. V. Rakovic and M. Fiacchini, "Invariant Approximations of the Maximal Invariant Set or Encircling the Square,", in IFAC World Congress, (2008).

[32]

S. V. Rakovic, E. Kerrigan and D. Q. Mayne, "Optimal Control of Constrained Piecewise Affine Systems with State-Dependent and Input-Dependent Distrubances,", in Proc. 16th Int. Sympo. on Mathematical Theory of Networks and Systems, (2004).

[33]

S. V. Rakovic, E. Kerrigan, D. Q. Mayne and J. Lygeros, Reachability analysis of discrete-time systems with disturbances,, IEEE Transactions on Automatic Control, 51 (2006), 546.

[34]

C. Tomlin, I. Mitchell, A. Bayen and M. Oishi, Computational techniques for the verification and control of hybrid systems,, Proc. IEEE, 91 (2003), 986.

[35]

F. D. Torrisi and A. Bemporad, "Discrete-Time Hybrid Modeling and Verification,", in Proc. 40th IEEE Conf. on Decision and Control, (2001).

[36]

R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros and S. Sastry, "Decidable and Semi-Decidable Controller Synthesis for Classes of Discrete Time Hybrid Systems,", in Proc. 40th IEEE Conf. on Decision and Control, (2001).

show all references

References:
[1]

E. Akin, "The General Topology of Dynamical Systems,", Graduate Studies in Mathematics, (1993).

[2]

Z. Artstein and S. Rakovic, Feedback invariance under uncertainty via set-iterates,, Automatica J. IFAC, 44 (2008), 520.

[3]

P. Ashwin, X. C. Fu, T. Nishikawa and K. Zyczkowski, Invariant sets for discontinuous parabolic area-preserving torus maps,, Nonlinearity, 13 (2000), 819.

[4]

P. Ashwin, X. C. Fu and J. R. Terry, Riddling and invariance for discontinuous maps preserving lebesgue measure,, Nonlinearity, 15 (2002), 633.

[5]

A. Bemporad, F. D. Torrisi and M. Morari, "Optimization-based verification and stability characterization of piecewise affine and hybrid systems,", in Proc. 3rd International Workshop on Hybrid Systems: Computation and Control, (2000).

[6]

D. Bertsekas, Infinite time reachability of state-space regions by using feedback control,, IEEE Transactions on Automatic Control, AC-17 (1972), 604.

[7]

F. Blanchini and S. Miani, "Set-Theoretic Methods in Control,", Systems & Control: Foundations & Applications, (2008).

[8]

T. Das, K. Lee and M. Lee, $c^1$-persistently continuum-wise expansive homoclinic classes and recurrent sets,, Topology and its Applications, 160 (2013), 350.

[9]

X. Fu, F. Chen and X. Zhao, Dynamical properties of 2-torus parabolic maps,, Nonlinear Dynamics, 50 (2007), 539.

[10]

X. Fu and J. Duan, Global attractors and invariant measures for non-invertible planar piecewise isometric maps,, Phys. Lett. A, 371 (2007), 285.

[11]

______, On global attractors for a class of nonhyperbolic piecewise affine maps,, Physica D, 237 (2008), 3369.

[12]

A. A. Julius and A. J. van der Schaft, The maximal controlled invariant set of switched linear systems,, Proc. 41st IEEE Conf. on Decision and Control, (2002), 3174.

[13]

B. Kahng, Chains of minimal image sets can attain arbitrary length until they reach maximal invariant sets,, preprint., ().

[14]

_______, The invariant set theory of multiple valued iterative dynamical systems,, in Recent Advances in System Science and Simulation in Engineering, 7 (2008), 19.

[15]

_______, Maximal invariant sets of multiple valued iterative dynamics in disturbed control systems,, Int. J. Circ. Sys. and Signal Processing, 2 (2008), 113.

[16]

_______, Positive invariance of multiple valued iterative dynamical systems in disturbed control models,, in, (2009), 663.

[17]

_______, Singularities of 2-dimensional invertible piecewise isometric dynamics,, Chaos, 19 (2009).

[18]

_______, The approximate control problems of the maximal invariant sets of non-linear discrete-time dis-turbed control dynamical systems: an algorithmic approach,, in Proc. Int. Conf. on Control and Auto. and Sys. Gyeonggi-do, (2010), 1513.

[19]

_______, Multiple valued iterative dynamics models of nonlinear discrete-time control dynamical systems with disturbance,, J. Korean Math. Soc., 50 (2013), 17.

[20]

E. Kerrigan, J. Lygeros and J. M. Maciejowski, "A Geometric Approach To Reachability Computations For Constrained Discrete-Time Systems,", in IFAC World Congress, (2002).

[21]

E. Kerrigan and J. M. Maciejowski, "Invariant Sets for Constrained Nonlinear Discrete-Time Systems with Application to Feasibility in Model Predictive Control,", in Proc. 39th IEEE Conf. on Decision and Control, (2000).

[22]

X. D. Koutsoukos and P. J. Antsaklis, Safety and reachability of piecewise-linear hybrid dynamical systems based on discrete abstractions,, J. Discr. Event Dynam. Sys., 13 (2003), 203.

[23]

K. Lee and M. Lee, Hyperbolicity of $c^1$-stably expansive homoclinic classes,, Discr. and Contin. Dynam. Sys., 27 (2010), 1133.

[24]

_______, Stably inverse shadowable transitive sets and dominated splitting,, Proc. Amer. Math. Soc., 140 (2012), 217.

[25]

K. Lee, K. Moriyasu and K. Sakai, $c^1$-stable shadowing diffeomorphisms,, Discr. and Contin. Dynam. Sys., 22 (2008), 683.

[26]

J. H. Lowenstein, G. Poggiaspalla and F. Vivaldi, Sticky orbits in a kicked-oscillator model,, Dynam. Sys., 20 (2005), 413.

[27]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality,, Automatica, 36 (2000), 789.

[28]

M. Mendes, "Dynamics of Piecewise Isometric Systems with Particular Emphasis to the Goetz Map,", Ph. D. Thesis, (2001).

[29]

_______, Quasi-invariant attractors of piecewise isometric systems,, Discr. Contin. Dynam. Sys., 9 (2003), 323.

[30]

C. J. Ong and E. G. Gilbert, Constrained linear systems with disturbances: Enlargement of their maximal invariant sets by nonlinear feedback,, (2006), (2006), 5246.

[31]

S. V. Rakovic and M. Fiacchini, "Invariant Approximations of the Maximal Invariant Set or Encircling the Square,", in IFAC World Congress, (2008).

[32]

S. V. Rakovic, E. Kerrigan and D. Q. Mayne, "Optimal Control of Constrained Piecewise Affine Systems with State-Dependent and Input-Dependent Distrubances,", in Proc. 16th Int. Sympo. on Mathematical Theory of Networks and Systems, (2004).

[33]

S. V. Rakovic, E. Kerrigan, D. Q. Mayne and J. Lygeros, Reachability analysis of discrete-time systems with disturbances,, IEEE Transactions on Automatic Control, 51 (2006), 546.

[34]

C. Tomlin, I. Mitchell, A. Bayen and M. Oishi, Computational techniques for the verification and control of hybrid systems,, Proc. IEEE, 91 (2003), 986.

[35]

F. D. Torrisi and A. Bemporad, "Discrete-Time Hybrid Modeling and Verification,", in Proc. 40th IEEE Conf. on Decision and Control, (2001).

[36]

R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros and S. Sastry, "Decidable and Semi-Decidable Controller Synthesis for Classes of Discrete Time Hybrid Systems,", in Proc. 40th IEEE Conf. on Decision and Control, (2001).

[1]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[2]

Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651

[3]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[4]

Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041

[5]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[6]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[7]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[8]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[9]

Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111

[10]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[11]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[12]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[13]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[14]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[15]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[16]

Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785

[17]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[18]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[19]

Igor Nazarov, Bai-Lian Li. Maximal sustainable yield in a multipatch habitat. Conference Publications, 2005, 2005 (Special) : 682-691. doi: 10.3934/proc.2005.2005.682

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]