2013, 2013(special): 385-391. doi: 10.3934/proc.2013.2013.385

A unified approach to Matukuma type equations on the hyperbolic space or on a sphere

1. 

Department of Mathematical Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan

Received  September 2012 Revised  February 2013 Published  November 2013

In this note, we consider the following Matukuma type equation on the hyperbolic space or on a spherical cap of the unit sphere under the homogeneous Dirichlet boundary condition \begin{eqnarray*} \Lambda u+K(x)u_+^{p}=0, \end{eqnarray*} where $\Lambda$ is the Laplace-Beltrami operator on the hyperbolic space or on the unit sphere. Under suitable assumptions on $K$, we determine the structure of positive solutions.
Citation: Yoshitsugu Kabeya. A unified approach to Matukuma type equations on the hyperbolic space or on a sphere. Conference Publications, 2013, 2013 (special) : 385-391. doi: 10.3934/proc.2013.2013.385
References:
[1]

C. Bandle, A. Brillard and M. Flucher, Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature,, Trans. Amer. Math. Soc. 350 (1998), 350 (1998), 1103.

[2]

C. Bandle and Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic equation on $\mathbb H^N$,, Adv. Nonlinear Anal. 1 (2012), 1 (2012), 1.

[3]

C. Bandle and L. A. Peletier, Best Sobolev constants and Emden equations for the critical exponent in $S^3$,, Math. Ann. 313 (1999), 313 (1999), 83.

[4]

C. Bandle and S. Stingelin, New numerical solutions for the Brezis-Nirenberg problem on $\mathbbS^n$, "Elliptic and parabolic problems, A special Tribute to the Work of H. Brezis'',, Progress in Nonlinear Differential Equations and Their Applications, (2005), 13.

[5]

C. Bandle and J. Wei, Multiple clustered layer solutions for semilinear elliptic problems on $S^n$,, Commun. Partial Differential Equations 33 (2008), (2008), 613.

[6]

C. Bandle and J. Wei, Nonradial clustered spike solutions for semilinear elliptic problems on $S^n$,, J. Anal. Math. 102 (2007), (2007), 181.

[7]

H. Brezis and L. A. Peletier, Elliptic equations with critical exponents on spherical caps of $S^3$,, J. Anal. Math. 98 (2006), (2006), 279.

[8]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vazquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space,, to appear., ().

[9]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.

[10]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of posiive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Suppl. Stud. 7A (1981), 7A (1981), 369.

[11]

A. Grigor'yan, "Heat kernel and analysis on manifolds'',, AMS, (2009).

[12]

Y. Kabeya, E. Yanagida and S. Yotsutani, Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball,, Proc. Royal Soc. Edinburgh, 131A (2001), 647.

[13]

Y. Kabeya, E. Yanagida and S. Yotsutani, Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems,, Comm. Pure Appl. Anal. 1, 1 (2002), 85.

[14]

N. Kawanao, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, Funkcial. Ekvac. 36 (1993), 36 (1993), 557.

[15]

A. Kosaka, Emden equation involving the critical Sobolev exponent with the third-kind boundary condition in $S^3$,, Kodai J. Math. 35 (2012), 35 (2012), 613.

[16]

S. Kumaresan and J. Prajapat, Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere,, Rend. Inst. Math. Univ. Trieste, 30 (1998), 107.

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\mathbbH^n$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 635.

[18]

S. Stapelkamp, The Brezis-Nirenberg problem on $\mathbbH^n$: existence and uniqueness of solutions in " Elliptic and Parabolic Problems- Rolduc and Gaeta 2001'',, Bemelmans et al. ed., (2002), 283.

[19]

S. Stingelin, New numerical solutions for the Brezis-Nirenberg problem on $S^n$,, Universität Basel preprint 2003-15, (2003), 2003.

[20]

E. Yanagida and S. Yotsutani, Classifications of the structure of positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, Arch. Rational Mech. Anal. 124 (1993), 124 (1993), 239.

[21]

E. Yanagida and S. Yotsutani, Pohozaev identity and its applications,, RIMS Kokyuroku 834 (1993), 834 (1993), 80.

[22]

E. Yanagida and S. Yotsutani, Existence of positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, J. Differential Equations 115, 115 (1995), 477.

[23]

E. Yanagida and S. Yotsutani, A unified approach to the structure of radial solutions for semi-linear elliptic problems,, Japan J. Indust. Appl. Math. 18 (2001), 18 (2001), 503.

show all references

References:
[1]

C. Bandle, A. Brillard and M. Flucher, Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature,, Trans. Amer. Math. Soc. 350 (1998), 350 (1998), 1103.

[2]

C. Bandle and Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic equation on $\mathbb H^N$,, Adv. Nonlinear Anal. 1 (2012), 1 (2012), 1.

[3]

C. Bandle and L. A. Peletier, Best Sobolev constants and Emden equations for the critical exponent in $S^3$,, Math. Ann. 313 (1999), 313 (1999), 83.

[4]

C. Bandle and S. Stingelin, New numerical solutions for the Brezis-Nirenberg problem on $\mathbbS^n$, "Elliptic and parabolic problems, A special Tribute to the Work of H. Brezis'',, Progress in Nonlinear Differential Equations and Their Applications, (2005), 13.

[5]

C. Bandle and J. Wei, Multiple clustered layer solutions for semilinear elliptic problems on $S^n$,, Commun. Partial Differential Equations 33 (2008), (2008), 613.

[6]

C. Bandle and J. Wei, Nonradial clustered spike solutions for semilinear elliptic problems on $S^n$,, J. Anal. Math. 102 (2007), (2007), 181.

[7]

H. Brezis and L. A. Peletier, Elliptic equations with critical exponents on spherical caps of $S^3$,, J. Anal. Math. 98 (2006), (2006), 279.

[8]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vazquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space,, to appear., ().

[9]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.

[10]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of posiive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Suppl. Stud. 7A (1981), 7A (1981), 369.

[11]

A. Grigor'yan, "Heat kernel and analysis on manifolds'',, AMS, (2009).

[12]

Y. Kabeya, E. Yanagida and S. Yotsutani, Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball,, Proc. Royal Soc. Edinburgh, 131A (2001), 647.

[13]

Y. Kabeya, E. Yanagida and S. Yotsutani, Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems,, Comm. Pure Appl. Anal. 1, 1 (2002), 85.

[14]

N. Kawanao, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, Funkcial. Ekvac. 36 (1993), 36 (1993), 557.

[15]

A. Kosaka, Emden equation involving the critical Sobolev exponent with the third-kind boundary condition in $S^3$,, Kodai J. Math. 35 (2012), 35 (2012), 613.

[16]

S. Kumaresan and J. Prajapat, Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere,, Rend. Inst. Math. Univ. Trieste, 30 (1998), 107.

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\mathbbH^n$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 635.

[18]

S. Stapelkamp, The Brezis-Nirenberg problem on $\mathbbH^n$: existence and uniqueness of solutions in " Elliptic and Parabolic Problems- Rolduc and Gaeta 2001'',, Bemelmans et al. ed., (2002), 283.

[19]

S. Stingelin, New numerical solutions for the Brezis-Nirenberg problem on $S^n$,, Universität Basel preprint 2003-15, (2003), 2003.

[20]

E. Yanagida and S. Yotsutani, Classifications of the structure of positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, Arch. Rational Mech. Anal. 124 (1993), 124 (1993), 239.

[21]

E. Yanagida and S. Yotsutani, Pohozaev identity and its applications,, RIMS Kokyuroku 834 (1993), 834 (1993), 80.

[22]

E. Yanagida and S. Yotsutani, Existence of positive radial solutions to $\Delta u+K(|x|)u^p=0$ in $R^n$,, J. Differential Equations 115, 115 (1995), 477.

[23]

E. Yanagida and S. Yotsutani, A unified approach to the structure of radial solutions for semi-linear elliptic problems,, Japan J. Indust. Appl. Math. 18 (2001), 18 (2001), 503.

[1]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[2]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

[3]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

[4]

Shoichi Hasegawa. A critical exponent of Joseph-Lundgren type for an Hénon equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1189-1198. doi: 10.3934/cpaa.2017058

[5]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, 2007, 2007 (Special) : 28-34. doi: 10.3934/proc.2007.2007.28

[6]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[7]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[8]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[9]

Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163

[10]

Valeria Banica, Rémi Carles, Thomas Duyckaerts. On scattering for NLS: From Euclidean to hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1113-1127. doi: 10.3934/dcds.2009.24.1113

[11]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[12]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[13]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[14]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

[15]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[16]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[17]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[18]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[19]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[20]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. On a system of semirelativistic equations in the energy space. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1343-1355. doi: 10.3934/cpaa.2015.14.1343

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]