• Previous Article
    Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
  • PROC Home
  • This Issue
  • Next Article
    Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid
2013, 2013(special): 365-374. doi: 10.3934/proc.2013.2013.365

Regularity of a vector valued two phase free boundary problems

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15024, United States

Received  September 2012 Revised  December 2012 Published  November 2013

Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$, $n\geq2$ and $\Sigma$ be a $q$ dimensional smooth submanifold of $\mathbb{R}^{m}$ with $0 \leq q < m$. We use $\mathcal{M}_{\Omega,\Sigma}$ to denote the collection of all pairs of $(A,u) $ such that $A\subset\Omega$ is a set of finite perimeter and $u\in H^{1}\left( \Omega,\mathbb{R}^{m}\right) $ satisfies \[ u\left( x\right) \in\Sigma\text{ a.e. }x\in A. \] We consider the energy functional \[ E_{\Omega}\left( A,u\right) =\int_{\Omega}\left\vert \nabla u\right\vert ^{2}+P_{\Omega}\left( A\right) , \] defined on $\mathcal{M}_{\Omega,\Sigma}$, where $P_{\Omega}\left( A\right) $ denotes the perimeter of $A$ inside $\Omega$. Let $\left( A,u\right) $ be a local energy minimizer. Our main result is that when $n\leq7$, $u$ is locally Lipschitz and the free boundary $\partial A$ is smooth in $\Omega$.
Citation: Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365
References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479.

[2]

Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992).

[3]

P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974).

[4]

Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1.

[5]

Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., ().

[6]

Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3.

[7]

Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5.

[8]

Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.

show all references

References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479.

[2]

Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992).

[3]

P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974).

[4]

Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1.

[5]

Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., ().

[6]

Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3.

[7]

Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5.

[8]

Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.

[1]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[2]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[3]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[4]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397

[5]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[6]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[7]

Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103

[8]

Qunying Zhang, Zhigui Lin. Blowup, global fast and slow solutions to a parabolic system with double fronts free boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 429-444. doi: 10.3934/dcdsb.2012.17.429

[9]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

[10]

Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386

[11]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[12]

Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481

[13]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems & Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[14]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[15]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[16]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[17]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[18]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[19]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[20]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]