# American Institute of Mathematical Sciences

• Previous Article
Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
• PROC Home
• This Issue
• Next Article
Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid
2013, 2013(special): 365-374. doi: 10.3934/proc.2013.2013.365

## Regularity of a vector valued two phase free boundary problems

 1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15024, United States

Received  September 2012 Revised  December 2012 Published  November 2013

Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$, $n\geq2$ and $\Sigma$ be a $q$ dimensional smooth submanifold of $\mathbb{R}^{m}$ with $0 \leq q < m$. We use $\mathcal{M}_{\Omega,\Sigma}$ to denote the collection of all pairs of $(A,u)$ such that $A\subset\Omega$ is a set of finite perimeter and $u\in H^{1}\left( \Omega,\mathbb{R}^{m}\right)$ satisfies $u\left( x\right) \in\Sigma\text{ a.e. }x\in A.$ We consider the energy functional $E_{\Omega}\left( A,u\right) =\int_{\Omega}\left\vert \nabla u\right\vert ^{2}+P_{\Omega}\left( A\right) ,$ defined on $\mathcal{M}_{\Omega,\Sigma}$, where $P_{\Omega}\left( A\right)$ denotes the perimeter of $A$ inside $\Omega$. Let $\left( A,u\right)$ be a local energy minimizer. Our main result is that when $n\leq7$, $u$ is locally Lipschitz and the free boundary $\partial A$ is smooth in $\Omega$.
Citation: Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365
##### References:
 [1] I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479. [2] Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992). [3] P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974). [4] Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1. [5] Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., (). [6] Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3. [7] Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5. [8] Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.

show all references

##### References:
 [1] I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479. [2] Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992). [3] P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974). [4] Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1. [5] Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., (). [6] Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3. [7] Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5. [8] Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.
 [1] Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591 [2] Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 [3] Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 [4] Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397 [5] Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751 [6] Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 [7] Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103 [8] Qunying Zhang, Zhigui Lin. Blowup, global fast and slow solutions to a parabolic system with double fronts free boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 429-444. doi: 10.3934/dcdsb.2012.17.429 [9] Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 [10] Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 [11] Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 [12] Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481 [13] Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems & Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361 [14] Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447 [15] Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 [16] Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799 [17] Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 [18] Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 [19] Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513 [20] Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

Impact Factor: