• Previous Article
    $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems
  • PROC Home
  • This Issue
  • Next Article
    Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
2013, 2013(special): 345-354. doi: 10.3934/proc.2013.2013.345

Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  August 2012 Revised  December 2012 Published  November 2013

The global existence of weak solutions to quasilinear ``degenerate'' Keller-Segel systems is shown in the recent papers [3], [4]. This paper gives some improvements and supplements of these. More precisely, the differentiability and the smallness of initial data are weakened when the spatial dimension $N$ satisfies $N\geq2$. Moreover, the global existence is established in the case $N=1$ which is unsolved in [4].
Citation: Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345
References:
[1]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol. 58 (2009), 58 (2009), 183.

[2]

S. Ishida, A study on the solvability of degenerate Keller-Segel systems,, Ph.D. thesis., ().

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations 252 (2012), 252 (2012), 1421.

[4]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469.

[5]

E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol. 26 (1970), 26 (1970), 399.

[6]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal. 10 (1986), 10 (1986), 299.

[7]

Y. Sugiyama, Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations 19 (2006), 19 (2006), 841.

[8]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333.

[9]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations 252 (2012), 252 (2012), 692.

[10]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations 248 (2010), 248 (2010), 2889.

show all references

References:
[1]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol. 58 (2009), 58 (2009), 183.

[2]

S. Ishida, A study on the solvability of degenerate Keller-Segel systems,, Ph.D. thesis., ().

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations 252 (2012), 252 (2012), 1421.

[4]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469.

[5]

E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol. 26 (1970), 26 (1970), 399.

[6]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal. 10 (1986), 10 (1986), 299.

[7]

Y. Sugiyama, Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations 19 (2006), 19 (2006), 841.

[8]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333.

[9]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations 252 (2012), 252 (2012), 692.

[10]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations 248 (2010), 248 (2010), 2889.

[1]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[2]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[3]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[4]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[5]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[6]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[7]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[8]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[9]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[10]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[11]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[12]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[13]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[14]

Xinru Cao. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1891-1904. doi: 10.3934/dcds.2015.35.1891

[15]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[16]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[17]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[18]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[19]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[20]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]