2013, 2013(special): 311-322. doi: 10.3934/proc.2013.2013.311

An optimal control problem in HIV treatment

1. 

Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204

2. 

Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992

3. 

Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona

Received  September 2012 Revised  February 2013 Published  November 2013

We consider a three-dimensional nonlinear control model, which describes the dynamics of HIV infection with nonlytic immune response and possible effects of controllable medication intake on HIV-infected patients. This model has the following phase variables: populations of the infected and uninfected cells and the concentration of an antiviral drug. The medication intake rate is chosen to be a bounded control function. The optimal control problem of minimizing the infected cells population at the terminal time is stated and solved. The types of the optimal control for different model parameters are obtained analytically. This allowed us to reduce the two-point boundary value problem for the Pontryagin Maximum Principle to one of the finite dimensional optimization. Numerical results are presented to demonstrate the optimal solution.
Citation: Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311
References:
[1]

B.M. Adams, H.T. Banks, H.D. Kwon and H.T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223.

[2]

S. Anita, V. Arnaŭtu and V. Capasso, Introduction to Optimal Control Problems in Life Sciences and Economics,, Birkhäuser, (2011).

[3]

S. Butler, D. Kirschner and S. Lenhart, Optimal Control of the Chemotherapy Affecting the Infectivity of HIV, in Advances in Mathematical Population Dynamics - Molecules, Cells and Man, 6, (eds. O. Arino, D. Axelrod and M. Kimmel),, World Scientific, (1997), 557.

[4]

R.V. Culshaw, S. Ruan and R.J. Spiteri, Optimal HIV treatment by maximising immune response,, Journal of Mathematical Biology, 48 (2004), 545.

[5]

A.V. Dmitruk, A generalized estimate on the number of zeros for solutions of a class of linear differential equations,, SIAM Journal on Control and Optimization, 30 (1992), 1087.

[6]

K.R. Fister, S. Lenhart and J.S. McNally, Optimizing chemotherapy in an HIV model,, Electronic Journal of Differential Equations, 1998 (1998), 1.

[7]

E.V. Grigorieva and E.N. Khailov, Attainable set of a nonlinear controlled microeconomic model,, Journal of Dynamical and Control Systems, 11 (2005), 157.

[8]

E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov and A. Korobeinikov, Three-dimensional nonlinear control model of wastewater biotreatment,, Neural, 20 (2012), 23.

[9]

E.V. Grigorieva and E.N. Khailov, Attainable Set of a Nonlinear Controlled System Describing the Process of Production and Sales of a Consumer Good, in Problems of Dynamical Control, issue 1, (eds. Yu.S. Osipov and A.V. Kryazhimskii),, MAX Press, (2005), 312.

[10]

E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov and A. Korobeinikov, Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion, in Industrial Waste, (eds. K.-Y. Show and X. Guo),, InTech, (2012), 91.

[11]

G. Huang, Y. Takeuchi and A. Korobeinikov, HIV evolution and progression of the infection to AIDS,, Journal of Theoretical Biology, 307 (2012), 149.

[12]

S. Iwami, T. Miura, S. Nakaoka and Y. Takeuchi, Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds,, Journal of Theoretical Biology, 260 (2009), 490.

[13]

H.R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Applications & Methods, 23 (2002), 199.

[14]

D. Kirschner, S. Lenhart and S. Serbin, Optimizing chemotherapy of HIV infection: scheduling, ammounts and initiation of treatment,, Journal of Mathematical Biology, 35 (1997), 775.

[15]

J.J. Kutch and P. Gurfil, Optimal control of HIV infection with a continuously-mutating viral population,, in Proceedings of American Control Conference, (2002), 4033.

[16]

U. Ledzewicz and H. Schättler, On optimal controls for a general mathematical model for chemotherapy of HIV,, in Proceedings of American Control Conference, (2002), 3454.

[17]

E.B. Lee and L. Marcus, Foundations of Optimal Control Theory,, John Wiley & Sons, (1967).

[18]

S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models,, CRC Press, (2007).

[19]

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).

[20]

G. Sansone, Equazioni Differenziali nel Campo Reale, Parte Prima,, Nicola Zanichelli, (1948).

[21]

E. Shudo and Y. Iwasa, Dynamic optimization of host defence, immune memory, and post-infection pathogen levels in mammals,, Journal of Theoretical Biology, 228 (2004), 17.

[22]

M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho and A.S. Perelson, Modeling plasma virus concentration during primary HIV infection,, Journal of Theoretical Biology, 203 (2000), 285.

[23]

R.F. Stengel, R. Ghigliazza, N. Rulkarni and O. Laplace, Optimal control of innate immune response,, Optimal Control Applications & Methods, 23 (2002), 91.

[24]

C. Vargas-De-Leon and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback,, Mathematical Medicine and Biology, (2011), 1.

[25]

F.P. Vasil'ev, Optimization Methods,, Factorial Press, (2002).

[26]

V.V. Velichenko and D.A. Pritykin, Control of the medical treatment of AIDS,, Automation and Remote Control, 67 (2006), 493.

[27]

D. Wodarz, J. Christensen and A. Thomsen, The importance of lytic and nonlytic immune responses in viral infections,, Trends in Immunology, 23 (2002), 194.

[28]

D. Wodarz and M.A. Nowak, Mathematical models of HIV pathogenesis and treatment,, BioEssays, 24 (2002), 1178.

[29]

H.G. Zadeh, H.C. Nejad, M.M. Abadi and H.M. Sani, A new fast optimal control for HIV-infection dynamics based on AVK method and fuzzy estimator,, American Journal of Scientific Research, 32 (2011), 11.

show all references

References:
[1]

B.M. Adams, H.T. Banks, H.D. Kwon and H.T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223.

[2]

S. Anita, V. Arnaŭtu and V. Capasso, Introduction to Optimal Control Problems in Life Sciences and Economics,, Birkhäuser, (2011).

[3]

S. Butler, D. Kirschner and S. Lenhart, Optimal Control of the Chemotherapy Affecting the Infectivity of HIV, in Advances in Mathematical Population Dynamics - Molecules, Cells and Man, 6, (eds. O. Arino, D. Axelrod and M. Kimmel),, World Scientific, (1997), 557.

[4]

R.V. Culshaw, S. Ruan and R.J. Spiteri, Optimal HIV treatment by maximising immune response,, Journal of Mathematical Biology, 48 (2004), 545.

[5]

A.V. Dmitruk, A generalized estimate on the number of zeros for solutions of a class of linear differential equations,, SIAM Journal on Control and Optimization, 30 (1992), 1087.

[6]

K.R. Fister, S. Lenhart and J.S. McNally, Optimizing chemotherapy in an HIV model,, Electronic Journal of Differential Equations, 1998 (1998), 1.

[7]

E.V. Grigorieva and E.N. Khailov, Attainable set of a nonlinear controlled microeconomic model,, Journal of Dynamical and Control Systems, 11 (2005), 157.

[8]

E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov and A. Korobeinikov, Three-dimensional nonlinear control model of wastewater biotreatment,, Neural, 20 (2012), 23.

[9]

E.V. Grigorieva and E.N. Khailov, Attainable Set of a Nonlinear Controlled System Describing the Process of Production and Sales of a Consumer Good, in Problems of Dynamical Control, issue 1, (eds. Yu.S. Osipov and A.V. Kryazhimskii),, MAX Press, (2005), 312.

[10]

E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov and A. Korobeinikov, Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion, in Industrial Waste, (eds. K.-Y. Show and X. Guo),, InTech, (2012), 91.

[11]

G. Huang, Y. Takeuchi and A. Korobeinikov, HIV evolution and progression of the infection to AIDS,, Journal of Theoretical Biology, 307 (2012), 149.

[12]

S. Iwami, T. Miura, S. Nakaoka and Y. Takeuchi, Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds,, Journal of Theoretical Biology, 260 (2009), 490.

[13]

H.R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Applications & Methods, 23 (2002), 199.

[14]

D. Kirschner, S. Lenhart and S. Serbin, Optimizing chemotherapy of HIV infection: scheduling, ammounts and initiation of treatment,, Journal of Mathematical Biology, 35 (1997), 775.

[15]

J.J. Kutch and P. Gurfil, Optimal control of HIV infection with a continuously-mutating viral population,, in Proceedings of American Control Conference, (2002), 4033.

[16]

U. Ledzewicz and H. Schättler, On optimal controls for a general mathematical model for chemotherapy of HIV,, in Proceedings of American Control Conference, (2002), 3454.

[17]

E.B. Lee and L. Marcus, Foundations of Optimal Control Theory,, John Wiley & Sons, (1967).

[18]

S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models,, CRC Press, (2007).

[19]

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).

[20]

G. Sansone, Equazioni Differenziali nel Campo Reale, Parte Prima,, Nicola Zanichelli, (1948).

[21]

E. Shudo and Y. Iwasa, Dynamic optimization of host defence, immune memory, and post-infection pathogen levels in mammals,, Journal of Theoretical Biology, 228 (2004), 17.

[22]

M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho and A.S. Perelson, Modeling plasma virus concentration during primary HIV infection,, Journal of Theoretical Biology, 203 (2000), 285.

[23]

R.F. Stengel, R. Ghigliazza, N. Rulkarni and O. Laplace, Optimal control of innate immune response,, Optimal Control Applications & Methods, 23 (2002), 91.

[24]

C. Vargas-De-Leon and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback,, Mathematical Medicine and Biology, (2011), 1.

[25]

F.P. Vasil'ev, Optimization Methods,, Factorial Press, (2002).

[26]

V.V. Velichenko and D.A. Pritykin, Control of the medical treatment of AIDS,, Automation and Remote Control, 67 (2006), 493.

[27]

D. Wodarz, J. Christensen and A. Thomsen, The importance of lytic and nonlytic immune responses in viral infections,, Trends in Immunology, 23 (2002), 194.

[28]

D. Wodarz and M.A. Nowak, Mathematical models of HIV pathogenesis and treatment,, BioEssays, 24 (2002), 1178.

[29]

H.G. Zadeh, H.C. Nejad, M.M. Abadi and H.M. Sani, A new fast optimal control for HIV-infection dynamics based on AVK method and fuzzy estimator,, American Journal of Scientific Research, 32 (2011), 11.

[1]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[2]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[3]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[4]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[5]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[6]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[7]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[8]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[9]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[10]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[11]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[12]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[13]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[14]

Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363

[15]

Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1

[16]

Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

[17]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[18]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[19]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[20]

Federico Papa, Francesca Binda, Giovanni Felici, Marco Franzetti, Alberto Gandolfi, Carmela Sinisgalli, Claudia Balotta. A simple model of HIV epidemic in Italy: The role of the antiretroviral treatment. Mathematical Biosciences & Engineering, 2018, 15 (1) : 181-207. doi: 10.3934/mbe.2018008

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]