
Previous Article
Optimization problems for the energy integral of pLaplace equations
 PROC Home
 This Issue

Next Article
Fast iteration of cocycles over rotations and computation of hyperbolic bundles
An optimal control problem in HIV treatment
1.  Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204 
2.  Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992 
3.  Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona 
References:
show all references
References:
[1] 
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D NavierStokes equations with mixed controlstate constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 6180. doi: 10.3934/mcrf.2012.2.61 
[2] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[3] 
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems  A, 1995, 1 (1) : 77101. doi: 10.3934/dcds.1995.1.77 
[4] 
Cristiana J. Silva, Delfim F. M. Torres. A TBHIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 46394663. doi: 10.3934/dcds.2015.35.4639 
[5] 
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395415. doi: 10.3934/cpaa.2004.3.395 
[6] 
H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems  A, 2000, 6 (3) : 557574. doi: 10.3934/dcds.2000.6.557 
[7] 
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161173. doi: 10.3934/naco.2013.3.161 
[8] 
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints  convex case. Conference Publications, 2011, 2011 (Special) : 174183. doi: 10.3934/proc.2011.2011.174 
[9] 
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54995519. doi: 10.3934/dcds.2015.35.5499 
[10] 
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 18971910. doi: 10.3934/cpaa.2012.11.1897 
[11] 
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (1) : 5976. doi: 10.3934/dcdss.2018004 
[12] 
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571579. doi: 10.3934/proc.2003.2003.571 
[13] 
Helen Moore, Weiqing Gu. A mathematical model for treatmentresistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363380. doi: 10.3934/mbe.2005.2.363 
[14] 
Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 121. doi: 10.3934/mbe.2015.12.1 
[15] 
Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 21352171. doi: 10.3934/dcds.2014.34.2135 
[16] 
Shanjian Tang. A secondorder maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 15811599. doi: 10.3934/dcdsb.2010.14.1581 
[17] 
Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335366. doi: 10.3934/cpaa.2007.6.335 
[18] 
Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 12911304. doi: 10.3934/dcds.2010.26.1291 
[19] 
ChiunChuan Chen, LiChang Hung, HsiaoFeng Liu. Nbarrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 791821. doi: 10.3934/dcds.2018034 
[20] 
Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653671. doi: 10.3934/jimo.2017067 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]