
Previous Article
Positive solutions of nonlocal fractional boundary value problems
 PROC Home
 This Issue

Next Article
Optimization problems for the energy integral of pLaplace equations
Existence of multiple solutions to a discrete fourth order periodic boundary value problem
1.  Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States 
References:
show all references
References:
[1] 
John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269275. doi: 10.3934/proc.2009.2009.269 
[2] 
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337344. doi: 10.3934/proc.2005.2005.337 
[3] 
Zhilin Yang, Jingxian Sun. Positive solutions of a fourthorder boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 16151628. doi: 10.3934/cpaa.2012.11.1615 
[4] 
Feliz Minhós, T. Gyulov, A. I. Santos. Existence and location result for a fourth order boundary value problem. Conference Publications, 2005, 2005 (Special) : 662671. doi: 10.3934/proc.2005.2005.662 
[5] 
John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 8490. doi: 10.3934/proc.2005.2005.84 
[6] 
Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$biharmonic operator. Discrete & Continuous Dynamical Systems  S, 2012, 5 (4) : 741751. doi: 10.3934/dcdss.2012.5.741 
[7] 
Wenming Zou. Multiple solutions results for twopoint boundary value problem with resonance. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 485496. doi: 10.3934/dcds.1998.4.485 
[8] 
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 8997. doi: 10.3934/dcdss.2008.1.89 
[9] 
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundaryvalue problem. Conference Publications, 2009, 2009 (Special) : 276285. doi: 10.3934/proc.2009.2009.276 
[10] 
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 8390. doi: 10.3934/proc.2003.2003.83 
[11] 
Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure & Applied Analysis, 2011, 10 (2) : 785802. doi: 10.3934/cpaa.2011.10.785 
[12] 
Guglielmo Feltrin. Multiple positive solutions of a sturmliouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 10831102. doi: 10.3934/cpaa.2017052 
[13] 
Weishi Liu. Geometric approach to a singular boundary value problem with turning points. Conference Publications, 2005, 2005 (Special) : 624633. doi: 10.3934/proc.2005.2005.624 
[14] 
JongShenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161177. doi: 10.3934/cpaa.2011.10.161 
[15] 
Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245268. doi: 10.3934/cpaa.2011.10.245 
[16] 
Junichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843859. doi: 10.3934/cpaa.2015.14.843 
[17] 
Grey Ballard, John Baxley, Nisrine Libbus. Qualitative behavior and computation of multiple solutions of nonlinear boundary value problems. Communications on Pure & Applied Analysis, 2006, 5 (2) : 251259. doi: 10.3934/cpaa.2006.5.251 
[18] 
Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity . Discrete & Continuous Dynamical Systems  A, 1999, 5 (3) : 489493. doi: 10.3934/dcds.1999.5.489 
[19] 
Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure & Applied Analysis, 2009, 8 (4) : 12691289. doi: 10.3934/cpaa.2009.8.1269 
[20] 
Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multipoint boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759769. doi: 10.3934/proc.2013.2013.759 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]