
Previous Article
Existence of nontrivial solutions to systems of multipoint boundary value problems
 PROC Home
 This Issue

Next Article
Existence of multiple solutions to a discrete fourth order periodic boundary value problem
Positive solutions of nonlocal fractional boundary value problems
1.  Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States, United States 
2.  Department of Mathematics, Northern Illinois University, DeKalb, Il 60115 
References:
show all references
References:
[1] 
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems  S, 2011, 4 (4) : 791800. doi: 10.3934/dcdss.2011.4.791 
[2] 
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 13071314. doi: 10.3934/cpaa.2011.10.1307 
[3] 
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657699. doi: 10.3934/cpaa.2016.15.657 
[4] 
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143164. doi: 10.3934/jcd.2015001 
[5] 
Wenming He, Junzhi Cui. The estimate of the multiscale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501516. doi: 10.3934/cpaa.2012.11.501 
[6] 
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487521. doi: 10.3934/ipi.2012.6.487 
[7] 
Jongkeun Choi, KiAhm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 19892022. doi: 10.3934/cpaa.2017098 
[8] 
ZhiMin Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems  B, 2014, 19 (9) : 27672783. doi: 10.3934/dcdsb.2014.19.2767 
[9] 
Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 7794. doi: 10.3934/naco.2013.3.77 
[10] 
Olga Kharlampovich and Alexei Myasnikov. Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements, 1998, 4: 101108. 
[11] 
ChiuYa Lan, HueyEr Lin, ShihHsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167183. doi: 10.3934/nhm.2006.1.167 
[12] 
Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems  A, 2011, 29 (2) : 417437. doi: 10.3934/dcds.2011.29.417 
[13] 
Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491500. doi: 10.3934/cpaa.2004.3.491 
[14] 
Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 33213327. doi: 10.3934/dcds.2013.33.3321 
[15] 
Alfonso Sorrentino. Computing Mather's $\beta$function for Birkhoff billiards. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 50555082. doi: 10.3934/dcds.2015.35.5055 
[16] 
Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in timevarying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 14071433. doi: 10.3934/cpaa.2014.13.1407 
[17] 
Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 6167. doi: 10.3934/eect.2015.4.61 
[18] 
Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 116. doi: 10.3934/dcdsb.2017188 
[19] 
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615620. doi: 10.3934/proc.2015.0615 
[20] 
Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141146. doi: 10.3934/proc.2003.2003.141 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]