2013, 2013(special): 247-257. doi: 10.3934/proc.2013.2013.247

Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator

1. 

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, 32901-6975, United States

2. 

Department of Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom

3. 

1133 N Desert Deer Pass, Green Valley, Arizona 85614-5530, United States

Received  September 2012 Revised  April 2013 Published  November 2013

In this paper we give a first order system of difference equations which provides a useful companion system in the study of Jacobi matrix operators and make use of it to obtain a characterization of the spectral density function for a simple case involving absolutely continuous spectrum on the stability intervals.
Citation: Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247
References:
[1]

M. Appell, Sur la transformation des équations différentielles linéaires,, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 91 (1880), 211.

[2]

F.V. Atkinson, "Discrete and Continuous Boundary Problems,", Academic Press, (1964).

[3]

M.S.P. Eastham, "The Spectral Theory of periodic differential equations,", Scottish Academic Press, (1973).

[4]

C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 194.

[5]

C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 150.

[6]

C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , ().

[7]

C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions,, in, (2009), 165.

[8]

B. Simon, "Szegö's Theorem and Its Descendants,", Princeton University Press, (2011).

[9]

G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices,", Dept of Mathematics, (2004).

[10]

G. Teschl, Jacobi Operators and Completely, Integrable Nonlinear Lattices,, Mathematical Surveys and Monographs, (2000).

show all references

References:
[1]

M. Appell, Sur la transformation des équations différentielles linéaires,, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 91 (1880), 211.

[2]

F.V. Atkinson, "Discrete and Continuous Boundary Problems,", Academic Press, (1964).

[3]

M.S.P. Eastham, "The Spectral Theory of periodic differential equations,", Scottish Academic Press, (1973).

[4]

C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 194.

[5]

C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 150.

[6]

C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , ().

[7]

C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions,, in, (2009), 165.

[8]

B. Simon, "Szegö's Theorem and Its Descendants,", Princeton University Press, (2011).

[9]

G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices,", Dept of Mathematics, (2004).

[10]

G. Teschl, Jacobi Operators and Completely, Integrable Nonlinear Lattices,, Mathematical Surveys and Monographs, (2000).

[1]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[2]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[3]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[4]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[5]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[6]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[7]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[8]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[9]

Ping-Liang Huang, Youde Wang. Periodic solutions of inhomogeneous Schrödinger flows into 2-sphere. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1775-1795. doi: 10.3934/dcdss.2016074

[10]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[11]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[12]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[13]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[14]

Xijun Hu, Penghui Wang. Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 763-784. doi: 10.3934/dcds.2016.36.763

[15]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[16]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[17]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[18]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[19]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[20]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]