2013, 2013(special): 237-246. doi: 10.3934/proc.2013.2013.237

Abstract theory of variational inequalities and Lagrange multipliers

1. 

Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522

2. 

Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301

Received  October 2012 Revised  April 2013 Published  November 2013

In this paper, the existence and uniqueness questions of abstract parabolic variational inequalities are considered in connection with Lagrange multipliers. The focus of authors' attention is the characterization of parabolic variational inequalities by means of Lagrange multipliers. It is well-known that various kinds of parabolic differential equations under convex constraints are represented by variational inequalities with time-dependent constraints, and the usage of Lagrange multipliers associated with constraints makes it possible to reformulate the variational inequalities as equations. In this paper, as a typical case, a parabolic problem with nonlocal time-dependent obstacle is treated in the framework of abstract evolution equations governed by time-dependent subdifferentials.
Citation: Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237
References:
[1]

V. Barbu and Th. Precupanu, Convexity and optimization in Banach space,, D. Reidel Publishing Company, (1986).

[2]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.

[3]

H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps,, C. R. Acad. Sci. Paris, 274 (1972), 310.

[4]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland, (1973).

[5]

E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints,, Adv. Math. Sci. Appl., 20 (2010), 467.

[6]

E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions,, Adv. Math. Sci. Appl., 22 (2012), 1.

[7]

A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition,, Adv. Math. Sci. Appl., 17 (2007), 337.

[8]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, (2008).

[9]

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications,, Academic Press, (1980).

[10]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, M. Chipot (Ed.), Vol.4 (2007), 203.

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, The Bull. Fac. Education, 30 (1981), 1.

[12]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint,, Nonlinear Anal., 75 (2012), 5672.

[13]

M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction,, Progr. Nonlinear Differential Equations Appl., (1993).

[14]

K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis,, Nonlinear Anal., 69 (2008), 3202.

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.

[16]

N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems,, pp. 288-301 in Functional analysis and global analysis, (1997), 288.

show all references

References:
[1]

V. Barbu and Th. Precupanu, Convexity and optimization in Banach space,, D. Reidel Publishing Company, (1986).

[2]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.

[3]

H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps,, C. R. Acad. Sci. Paris, 274 (1972), 310.

[4]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland, (1973).

[5]

E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints,, Adv. Math. Sci. Appl., 20 (2010), 467.

[6]

E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions,, Adv. Math. Sci. Appl., 22 (2012), 1.

[7]

A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition,, Adv. Math. Sci. Appl., 17 (2007), 337.

[8]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, (2008).

[9]

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications,, Academic Press, (1980).

[10]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, M. Chipot (Ed.), Vol.4 (2007), 203.

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, The Bull. Fac. Education, 30 (1981), 1.

[12]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint,, Nonlinear Anal., 75 (2012), 5672.

[13]

M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction,, Progr. Nonlinear Differential Equations Appl., (1993).

[14]

K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis,, Nonlinear Anal., 69 (2008), 3202.

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.

[16]

N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems,, pp. 288-301 in Functional analysis and global analysis, (1997), 288.

[1]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[2]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[3]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[4]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[5]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[6]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[7]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[8]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[9]

Benny Avelin, Tuomo Kuusi, Mikko Parviainen. Variational parabolic capacity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5665-5688. doi: 10.3934/dcds.2015.35.5665

[10]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[11]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[12]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[13]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[14]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[15]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[16]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[17]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[18]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[19]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-20. doi: 10.3934/jimo.2017091

[20]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]