2013, 2013(special): 207-216. doi: 10.3934/proc.2013.2013.207

An approximation model for the density-dependent magnetohydrodynamic equations

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

Received  July 2012 Published  November 2013

The global Cauchy problem for an approximation model for the density-dependent MHD system is studied. The vanishing limit on $\alpha$ is also discussed.
Citation: Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207
References:
[1]

H. Abidi, M. Paicu, Global existence for the MHD system in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447.

[2]

B. Desjardins, C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics,, Differential and Integral Equations, 11 (1998), 377.

[3]

J. Fan, T. Ozawa, Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model,, Kinetic Related Models 2 (2009), 2 (2009), 293.

[4]

J. F. Gerbeau, C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, Adv. Differential Equations, 2 (1997), 427.

[5]

M. Holst, E. Lunasin, G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models,, J. of Nonlinear Science, 20 (2010), 523.

[6]

J. S. Linshiz, E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, J. Math. Phys., 48 (2007).

[7]

Y. Yu, K.Li, Existence of solutions for the MHD-Leray-alpha equations and their relations to the MHD equations,, J. Math. Anal. Appl., 329 (2007), 298.

[8]

Y. Zhou, J. Fan, Global Cauchy problem for a regularized Leray-$\alpha$-MHD model with partial viscous terms,, preprint, (2009).

[9]

Y. Zhou, J. Fan, A regularity criterion for the density-dependent magnetohydrodynamic equations,, Math. Meth. Appl. Sci. 33 (2010), 33 (2010), 1350.

show all references

References:
[1]

H. Abidi, M. Paicu, Global existence for the MHD system in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447.

[2]

B. Desjardins, C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics,, Differential and Integral Equations, 11 (1998), 377.

[3]

J. Fan, T. Ozawa, Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model,, Kinetic Related Models 2 (2009), 2 (2009), 293.

[4]

J. F. Gerbeau, C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, Adv. Differential Equations, 2 (1997), 427.

[5]

M. Holst, E. Lunasin, G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models,, J. of Nonlinear Science, 20 (2010), 523.

[6]

J. S. Linshiz, E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, J. Math. Phys., 48 (2007).

[7]

Y. Yu, K.Li, Existence of solutions for the MHD-Leray-alpha equations and their relations to the MHD equations,, J. Math. Anal. Appl., 329 (2007), 298.

[8]

Y. Zhou, J. Fan, Global Cauchy problem for a regularized Leray-$\alpha$-MHD model with partial viscous terms,, preprint, (2009).

[9]

Y. Zhou, J. Fan, A regularity criterion for the density-dependent magnetohydrodynamic equations,, Math. Meth. Appl. Sci. 33 (2010), 33 (2010), 1350.

[1]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[2]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[3]

Jacques A. L. Silva, Flávia T. Giordani. Density-dependent dispersal in multiple species metapopulations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 843-857. doi: 10.3934/mbe.2008.5.843

[4]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[5]

Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic & Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008

[6]

J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054

[7]

Baojun Song, Wen Du, Jie Lou. Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1651-1668. doi: 10.3934/mbe.2013.10.1651

[8]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic & Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[9]

Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179

[10]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[11]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

[12]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[13]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[14]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[15]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[16]

Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1157-1172. doi: 10.3934/mbe.2015.12.1157

[17]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[18]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[19]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[20]

Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]