
Previous Article
On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space
 PROC Home
 This Issue

Next Article
Small data solutions for semilinear wave equations with effective damping
Analysis of the accelerated weighted ensemble methodology
1.  Mechanical Engineering Department, Stanford University, CA, United States 
2.  Computer Science and Engineering, University of Notre Dame, IN, United States, United States 
3.  Mechanical Engineering Department and Institute for Computational and Mathematical Engineering, Stanford University, CA, United States 
References:
show all references
References:
[1] 
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 417435. doi: 10.3934/dcdsb.2013.18.417 
[2] 
Mark F. Demers, Christopher J. Ianzano, Philip Mayer, Peter Morfe, Elizabeth C. Yoo. Limiting distributions for countable state topological Markov chains with holes. Discrete & Continuous Dynamical Systems  A, 2017, 37 (1) : 105130. doi: 10.3934/dcds.2017005 
[3] 
LeongKwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193207. doi: 10.3934/naco.2014.4.193 
[4] 
C. Cortázar, Marta GarcíaHuidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813826. doi: 10.3934/cpaa.2006.5.813 
[5] 
C. Cortázar, Marta GarcíaHuidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 7184. doi: 10.3934/cpaa.2006.5.71 
[6] 
Jiongmin Yong. Remarks on some short rate term structure models. Journal of Industrial & Management Optimization, 2006, 2 (2) : 119134. doi: 10.3934/jimo.2006.2.119 
[7] 
Roberto C. Alamino, Nestor Caticha. Bayesian online algorithms for learning in discrete hidden Markov models. Discrete & Continuous Dynamical Systems  B, 2008, 9 (1) : 110. doi: 10.3934/dcdsb.2008.9.1 
[8] 
DongMei Zhu, WaiKi Ching, Robert J. Elliott, TakKuen Siu, Lianmin Zhang. Hidden Markov models with threshold effects and their applications to oil price forecasting. Journal of Industrial & Management Optimization, 2017, 13 (2) : 757773. doi: 10.3934/jimo.2016045 
[9] 
Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165175. doi: 10.3934/jimo.2006.2.165 
[10] 
Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 23292355. doi: 10.3934/cpaa.2016039 
[11] 
Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 195211. doi: 10.3934/dcdsb.2010.13.195 
[12] 
Cruz VargasDeLeón, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10191033. doi: 10.3934/mbe.2017053 
[13] 
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reactiondiffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 3959. doi: 10.3934/eect.2015.4.39 
[14] 
Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177189. doi: 10.3934/jcd.2014.1.177 
[15] 
Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 10771105. doi: 10.3934/dcdsb.2015.20.1077 
[16] 
LeongKwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385400. doi: 10.3934/jimo.2011.7.385 
[17] 
E. Almaraz, A. GómezCorral. On SIRmodels with Markovmodulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 21532176. doi: 10.3934/dcdsb.2018229 
[18] 
Virginia GonzálezVélez, Amparo Gil, Iván Quesada. Minimal state models for ionic channels involved in glucagon secretion. Mathematical Biosciences & Engineering, 2010, 7 (4) : 793807. doi: 10.3934/mbe.2010.7.793 
[19] 
W. Y. Tan, L.J. Zhang, C.W. Chen. Stochastic modeling of carcinogenesis: State space models and estimation of parameters. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 297322. doi: 10.3934/dcdsb.2004.4.297 
[20] 
ChihYuan Chen, ShinHwa Wang, KuoChih Hung. Sshaped bifurcation curves for a combustion problem with general arrhenius reactionrate laws. Communications on Pure & Applied Analysis, 2014, 13 (6) : 25892608. doi: 10.3934/cpaa.2014.13.2589 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]