# American Institute of Mathematical Sciences

2013, 2013(special): 159-169. doi: 10.3934/proc.2013.2013.159

## On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space

 1 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste, Italy, Italy

Received  September 2012 Revised  March 2013 Published  November 2013

We develop a lower and upper solution method for the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space \begin{equation*} \begin{cases} -{\rm div}\Big( \nabla u /\sqrt{1 - |\nabla u|^2}\Big)= f(x,u) & \hbox{ in } \Omega, \\ u=0& \hbox{ on } \partial \Omega. \end{cases} \end{equation*} Here $\Omega$ is a bounded regular domain in $\mathbb {R}^N$ and the function $f$ satisfies the Carathéodory conditions. The obtained results display various peculiarities due to the special features of the involved differential operator.
Citation: Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159
##### References:
 [1] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature,, Comm. Math. Phys. \textbf{87} (1982/83), 87 (): 131. [2] C. Bereanu, P. Jebelean, and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space,, J. Funct. Anal. \textbf{264} (2013), 264 (2013), 270. [3] C. Bereanu, P. Jebelean, and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space,, J. Funct. Anal. \textbf{265} (2013), 265 (2013), 644. [4] H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations \textbf{23} (2010), 23 (2010), 801. [5] I. Coelho, C. Corsato, F. Obersnel, and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation,, Adv. Nonlinear Stud. \textbf{12} (2012), 12 (2012), 621. [6] I. Coelho, C. Corsato, and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball,, Topol. Methods Nonlinear Anal. (2013), (2013). [7] C. Corsato, F. Obersnel, P. Omari, and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space,, J. Math. Anal. Appl. \textbf{405} (2013) 227-239., 405 (2013), 227. [8] C. Gerhardt, $H$-surfaces in Lorentzian manifolds,, Comm. Math. Phys. \textbf{89} (1983), 89 (1983), 523. [9] J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator,, Milan J. Math. \textbf{79} (2011), 79 (2011), 95. [10] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations {\bf 21} (1996), 21 (1996), 721.

show all references

##### References:
 [1] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature,, Comm. Math. Phys. \textbf{87} (1982/83), 87 (): 131. [2] C. Bereanu, P. Jebelean, and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space,, J. Funct. Anal. \textbf{264} (2013), 264 (2013), 270. [3] C. Bereanu, P. Jebelean, and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space,, J. Funct. Anal. \textbf{265} (2013), 265 (2013), 644. [4] H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations \textbf{23} (2010), 23 (2010), 801. [5] I. Coelho, C. Corsato, F. Obersnel, and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation,, Adv. Nonlinear Stud. \textbf{12} (2012), 12 (2012), 621. [6] I. Coelho, C. Corsato, and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball,, Topol. Methods Nonlinear Anal. (2013), (2013). [7] C. Corsato, F. Obersnel, P. Omari, and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space,, J. Math. Anal. Appl. \textbf{405} (2013) 227-239., 405 (2013), 227. [8] C. Gerhardt, $H$-surfaces in Lorentzian manifolds,, Comm. Math. Phys. \textbf{89} (1983), 89 (1983), 523. [9] J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator,, Milan J. Math. \textbf{79} (2011), 79 (2011), 95. [10] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations {\bf 21} (1996), 21 (1996), 721.
 [1] Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963 [2] Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 [3] Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 [4] Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 [5] Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575 [6] Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061 [7] Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169 [8] Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 [9] Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 [10] Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315 [11] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [12] Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949 [13] Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112 [14] Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 [15] Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 [16] Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 [17] Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297 [18] João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217 [19] Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014 [20] Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

Impact Factor: