2013, 2013(special): 129-137. doi: 10.3934/proc.2013.2013.129

Numerical optimal unbounded control with a singular integro-differential equation as a constraint

1. 

Department of Applied Statistics, Chung Hua University, Hsinchu, Taiwan

Received  August 2012 Revised  March 2013 Published  November 2013

This study presents a discussion of numerical methods for optimal control using an integro-differential equation of singular kernel as a constraint. The proposed scheme attempts to set the objective to minimize the gap between optimal state and target function for certain period of time. By assuming that control is unbounded, this study proposes a method of feedback correction that makes correction each step for optimal control. These corrections are proportional to the corresponding state-target distance until a certain accuracy criterion is satisfied. There are several advantages to this method, including user-decided accuracy, user-decided number of iterations, and time saving. This study presents a comparison of the numerical results with the results of other methods [4],[7].
Citation: Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129
References:
[1]

J. A. Burns, E. M. Cliff and T. L. Herdman, A state-space model for an aeroelastic system,, Burns, (1983), 1074.

[2]

J. A. Burns, T. L. Herdman, Harlan W. Stech, Linear functional differential equations as semigroups on product spaces,, Siam J. Math. Anal., Vol.14 (1983), 98.

[3]

Hsin-Hao Chen and S. Chiang, A specific procedure for analytic solutions to a class of singular integral equations,, Chung Hua Journal of Computational Science, (2012), 7.

[4]

S. Chiang, Numerical optimal issues to a class of neutral singular integro-differential equations,, Chung Hua Journal of Computational Science, (2012), 7.

[5]

S. Chiang, Notes on the solution of a class of singular integral equations,, Chung Hua Journal of Science and Engineering, Vol. 3 (2005), 89.

[6]

S. Chiang, On the numerical solution of a class of singular integro-differential equations,, Chung Hua Journal of Science and Engineering, Vol. 4 (2006), 43.

[7]

S. Chiang and T. L. Herdman, Revised numerical methods on the optimal control problem for a class of singular integral equations,, Mathematics in Engineering, Vol. 4 (2013), 171.

[8]

Chien-Chi Yu and S. Chiang, On the numerical optimal controls for a class of integro-differential equations of neutral type,, Chung Hua Journal of Computational Science, (2011), 1.

[9]

F. Kappel and K. P. Zhang, Equivalence of functional equations of neutral type and abstract Cauchy problems,, Monatsh Math., Vol. 101 (1986), 115.

show all references

References:
[1]

J. A. Burns, E. M. Cliff and T. L. Herdman, A state-space model for an aeroelastic system,, Burns, (1983), 1074.

[2]

J. A. Burns, T. L. Herdman, Harlan W. Stech, Linear functional differential equations as semigroups on product spaces,, Siam J. Math. Anal., Vol.14 (1983), 98.

[3]

Hsin-Hao Chen and S. Chiang, A specific procedure for analytic solutions to a class of singular integral equations,, Chung Hua Journal of Computational Science, (2012), 7.

[4]

S. Chiang, Numerical optimal issues to a class of neutral singular integro-differential equations,, Chung Hua Journal of Computational Science, (2012), 7.

[5]

S. Chiang, Notes on the solution of a class of singular integral equations,, Chung Hua Journal of Science and Engineering, Vol. 3 (2005), 89.

[6]

S. Chiang, On the numerical solution of a class of singular integro-differential equations,, Chung Hua Journal of Science and Engineering, Vol. 4 (2006), 43.

[7]

S. Chiang and T. L. Herdman, Revised numerical methods on the optimal control problem for a class of singular integral equations,, Mathematics in Engineering, Vol. 4 (2013), 171.

[8]

Chien-Chi Yu and S. Chiang, On the numerical optimal controls for a class of integro-differential equations of neutral type,, Chung Hua Journal of Computational Science, (2011), 1.

[9]

F. Kappel and K. P. Zhang, Equivalence of functional equations of neutral type and abstract Cauchy problems,, Monatsh Math., Vol. 101 (1986), 115.

[1]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[2]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[3]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[4]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[5]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[6]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations . Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[7]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[8]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[9]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[10]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[11]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[12]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[13]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[14]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[15]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[16]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[17]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[18]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[19]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[20]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]