2013, 2013(special): 95-104. doi: 10.3934/proc.2013.2013.95

Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions

1. 

Dpto. de Matemática Aplicada y Computación, Escuela Técnica Superior de Ingeniería - ICAI, Universidad Pontificia Comillas, Alberto Aguilera, 25, 28015-Madrid, Spain

Received  September 2012 Revised  June 2013 Published  November 2013

In this paper a nonlinear boundary value problem of logistic type is considered, with nonlinear mixed boundary conditions, and with spatial heterogeneities of arbitrary sign in the differential equation and on the boundary conditions. The main goal of this paper is analyzing the structure of the continuum of positive solutions emanating from the trivial state at a unique bifurcation value, depending on the size and sign of the different potentials and parameters of the problem. The results in this paper extend the previous ones obtained by R. Gómez-Reñasco and J. López-Gómez [5, Proposition 2.1], for a superlinear indefinite problem of logistic type under Dirichlet boundary conditions, to a wide class of superlinear indefinite problems with nonlinear indefinite mixed boundary conditions.
Citation: Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95
References:
[1]

H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions,, in, 21 (1976), 43.

[2]

H. Amann, Dual semigroups second order linear elliptic boundary value problems,, Israel Journal of Mathematics, 45 (1983), 225.

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Func. Analysis, 8 (1971), 321.

[4]

J. García-Melián, C. Morales-Rodrigo, J. D. Rossi and A. Suárez, Nonnegative solutions to an elliptic problem with nonlinear absorption and a nonlinear incoming flux on the boundary,, Ann. Mat. Pura Appl. (4), 187 (2008), 459.

[5]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffucion equations,, Journal of Differential Equations, 167 (2000), 36.

[6]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions",, Princeton Mathematical Series, (1970).

show all references

References:
[1]

H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions,, in, 21 (1976), 43.

[2]

H. Amann, Dual semigroups second order linear elliptic boundary value problems,, Israel Journal of Mathematics, 45 (1983), 225.

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Func. Analysis, 8 (1971), 321.

[4]

J. García-Melián, C. Morales-Rodrigo, J. D. Rossi and A. Suárez, Nonnegative solutions to an elliptic problem with nonlinear absorption and a nonlinear incoming flux on the boundary,, Ann. Mat. Pura Appl. (4), 187 (2008), 459.

[5]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffucion equations,, Journal of Differential Equations, 167 (2000), 36.

[6]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions",, Princeton Mathematical Series, (1970).

[1]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[2]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[3]

Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2149-2171. doi: 10.3934/cpaa.2018103

[4]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[5]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[6]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[7]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[8]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[9]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[10]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[11]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[12]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[13]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[14]

Hongjing Pan, Ruixiang Xing. On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3627-3682. doi: 10.3934/dcds.2015.35.3627

[15]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[16]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[17]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[18]

Grey Ballard, John Baxley, Nisrine Libbus. Qualitative behavior and computation of multiple solutions of nonlinear boundary value problems. Communications on Pure & Applied Analysis, 2006, 5 (2) : 251-259. doi: 10.3934/cpaa.2006.5.251

[19]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[20]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]