2013, 2013(special): 85-94. doi: 10.3934/proc.2013.2013.85

The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary

1. 

Dpto. de Matemáticas. Escuela Politécnica, Avenida de la Universidad s/n, 10003 Cáceres, Spain

2. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico., Fac. de Matemáticas. C. Tarfia s/n., 41012 Sevilla

Received  September 2012 Published  November 2013

We consider a domain in $\mathbb{R}^N$, $N\geq 3$, such that a portion of its boundary is plane. In this portion we fix a sequence $K_\epsilon$ of small subsets randomly distributed in such way that the distance between them is of order $\epsilon$ and their diameters are of order $\epsilon^\frac{N-1}{N-2}$. We study the asymptotic behavior of the heat equation with Dirichlet conditions on $K_\epsilon$ and Neumann conditions on the rest of the boundary. We prove the convergence to a limit problem with a Fourier-Robin boundary condition which has the physical interest of being deterministic.
Citation: Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary. Conference Publications, 2013, 2013 (special) : 85-94. doi: 10.3934/proc.2013.2013.85
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math Anal. 23 (1992), 23 (1992), 1482.

[2]

G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation,, Proc. Roy. Soc. Edinburgh A 456 (1996), 456 (1996), 297.

[3]

T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory,, SIAM J. Math. Anal., 21 (1990), 823.

[4]

A. Bourgeat, A. Mikelic, S. Wright, Stochastic two-scale convergence in the mean and applications,, J. Reine Angew. Math. 456 (1994) 19-51., 456 (1994), 19.

[5]

L.A. Caffarelli, A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linèaire 26 (2009), 26 (2009), 375.

[6]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets,, Disc. Cont. Din. Systems Suplement (2007), (2007), 181.

[7]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets., ESAIM Control, 15 (2009), 49.

[8]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Homogenization of Dirichlet problems in randomly perforated domains., To appear., ().

[9]

J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains,, Proc. Royal Soc. Edinburgh, 127A (1997), 457.

[10]

J. Casado-Díaz, Two-Scale convergence for nonlinear Dirichlet problems in perforated domains,, Proceedings of the Royal Society of Edinburgh A, 130 (2000), 249.

[11]

J. Casado-Díaz, I. Gayte, The Two-Scale Convergence Method Applied to Generalized Besicovitch Spaces,, Proc. R. Soc. Lond. A 2002 458, 458 (2002), 2925.

[12]

J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains,, SIAM J. Math. Anal., 31 (2000), 581.

[13]

D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization,, C.R. Acad. Sci. Paris, 335 (2002), 99.

[14]

D. Cioranescu, F. Murat, Un terme étrange venu d'ailleurs, in, Nonlinear Partial Differential Equations and Their Applications, II (1982), 98.

[15]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization,, Ann. Mat. Pura Appl. 72 (1993), 72 (1993), 405.

[16]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory,, J. Reine Angew, 368 (1986), 28.

[17]

G. Dal Maso, U. Mosco, Wiener-criterion and $\Gamma$-convergence,, Appl. Math. Optim. 15 (1987), 15 (1987), 15.

[18]

G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators,, Ann. Sc. Norm. Sup. Pisa. 7, 4 (1997), 765.

[19]

V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of differential operators and integral functionals,, Springer-Verlag, (1994).

[20]

S.M. Kozlov, Homogenization of random operators,, Math. U.S.S.R. Sb., 37 (1980), 167.

[21]

M. Lenczner, Homogénéisation d'un circuit électrique,, C. R. Acad. Sci. Paris II, 324 (1997), 537.

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal. 20 (1989), 20 (1989), 608.

[23]

G.C. Papanicolaou, S.R.S. Varadhan, Diffusion in regions with many small holes,, in Stochastic differential systems, (1980).

[24]

G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,, Colloq. Math. Soc. J. Bolyai, (1981), 835.

[25]

I.V. Skrypnik., Averaging of nonlinear Dirichlet problems in punctured domains of general structure,, Mat. Sb. 187, 8 (1996), 125.

[26]

Yosida, K., Functional Analysis,, Springer-Verlag, (1980).

[27]

V.V. Yurinski, Averaging an elliptic boundary value problem with random coefficients,, Sib. Math. J. 21, 21 (1981), 470.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math Anal. 23 (1992), 23 (1992), 1482.

[2]

G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation,, Proc. Roy. Soc. Edinburgh A 456 (1996), 456 (1996), 297.

[3]

T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory,, SIAM J. Math. Anal., 21 (1990), 823.

[4]

A. Bourgeat, A. Mikelic, S. Wright, Stochastic two-scale convergence in the mean and applications,, J. Reine Angew. Math. 456 (1994) 19-51., 456 (1994), 19.

[5]

L.A. Caffarelli, A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linèaire 26 (2009), 26 (2009), 375.

[6]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets,, Disc. Cont. Din. Systems Suplement (2007), (2007), 181.

[7]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets., ESAIM Control, 15 (2009), 49.

[8]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Homogenization of Dirichlet problems in randomly perforated domains., To appear., ().

[9]

J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains,, Proc. Royal Soc. Edinburgh, 127A (1997), 457.

[10]

J. Casado-Díaz, Two-Scale convergence for nonlinear Dirichlet problems in perforated domains,, Proceedings of the Royal Society of Edinburgh A, 130 (2000), 249.

[11]

J. Casado-Díaz, I. Gayte, The Two-Scale Convergence Method Applied to Generalized Besicovitch Spaces,, Proc. R. Soc. Lond. A 2002 458, 458 (2002), 2925.

[12]

J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains,, SIAM J. Math. Anal., 31 (2000), 581.

[13]

D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization,, C.R. Acad. Sci. Paris, 335 (2002), 99.

[14]

D. Cioranescu, F. Murat, Un terme étrange venu d'ailleurs, in, Nonlinear Partial Differential Equations and Their Applications, II (1982), 98.

[15]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization,, Ann. Mat. Pura Appl. 72 (1993), 72 (1993), 405.

[16]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory,, J. Reine Angew, 368 (1986), 28.

[17]

G. Dal Maso, U. Mosco, Wiener-criterion and $\Gamma$-convergence,, Appl. Math. Optim. 15 (1987), 15 (1987), 15.

[18]

G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators,, Ann. Sc. Norm. Sup. Pisa. 7, 4 (1997), 765.

[19]

V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of differential operators and integral functionals,, Springer-Verlag, (1994).

[20]

S.M. Kozlov, Homogenization of random operators,, Math. U.S.S.R. Sb., 37 (1980), 167.

[21]

M. Lenczner, Homogénéisation d'un circuit électrique,, C. R. Acad. Sci. Paris II, 324 (1997), 537.

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal. 20 (1989), 20 (1989), 608.

[23]

G.C. Papanicolaou, S.R.S. Varadhan, Diffusion in regions with many small holes,, in Stochastic differential systems, (1980).

[24]

G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,, Colloq. Math. Soc. J. Bolyai, (1981), 835.

[25]

I.V. Skrypnik., Averaging of nonlinear Dirichlet problems in punctured domains of general structure,, Mat. Sb. 187, 8 (1996), 125.

[26]

Yosida, K., Functional Analysis,, Springer-Verlag, (1980).

[27]

V.V. Yurinski, Averaging an elliptic boundary value problem with random coefficients,, Sib. Math. J. 21, 21 (1981), 470.

[1]

Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713

[2]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[3]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[4]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[5]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks & Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks & Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413

[8]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[9]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[10]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[11]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[12]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

[13]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[14]

Michel Lenczner. Homogenization of linear spatially periodic electronic circuits. Networks & Heterogeneous Media, 2006, 1 (3) : 467-494. doi: 10.3934/nhm.2006.1.467

[15]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[16]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[17]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[18]

Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks & Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489

[19]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[20]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]