2013, 2013(special): 77-83. doi: 10.3934/proc.2013.2013.77

An iterative method for the canard explosion in general planar systems

1. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Received  September 2012 Revised  April 2013 Published  November 2013

The canard explosion is the change of amplitude and period of a limit cycle born in a Hopf bifurcation in a very narrow parameter interval. The phenomenon is well understood in singular perturbation problems where a small parameter controls the slow/fast dynamics. However, canard explosions are also observed in systems where no such parameter can obviously be identified. Here we show how the iterative method of Roussel and Fraser, devised to construct regular slow manifolds, can be used to determine a canard point in a general planar system of nonlinear ODEs. We demonstrate the method on the van der Pol equation, showing that the asymptotics of the method is correct, and on a templator model for a self-replicating system.
Citation: Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77
References:
[1]

E. Benoit, J. L. Callot, F. Diener, and M. Diener., Chasse au canard., Collectanea Mathematica, (1981), 37.

[2]

K. M. Beutel and E. Peacock-López., Complex dynamics in a cross-catalytic self-replication mechanism., Journal of Chemical Physics, (2007).

[3]

M. Brøns., Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures., Proceedings of the Royal Society of London Series A, (2005), 2289.

[4]

M. Brøns., Canard explosion of limit cycles in templator models of self-replication mechanisms., Journal of Chemical Physics, (2011).

[5]

M. Brøns and K. Bar-Eli., Asymptotic analysis of canards in the EOE equations and the role of the inflection line., Proceedings of the Royal Society of London Series A, (1994), 305.

[6]

M. Brøns and J. Sturis., Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system., Physical Review E, (2001).

[7]

M. Desroches and M. R: Jeffrey., Canards and curvature: the 'smallness' of $\epsilon$ in slow-fast dynamics., Proceedings of the Royal Society of London Series A, (2011), 2404.

[8]

W. Eckhaus., Relaxation oscillations including a standard chase on French ducks., In Asymptotic Analysis II, (1983), 449.

[9]

S. J. Fraser., The steady state and equilibrium approximations: A geometrical picture., Journal of Chemical Physics, (1988), 4732.

[10]

M. Krupa and P. Szmolyan., Relaxation oscillations and canard explosion., Journal of Differential Equations, (2001), 312.

[11]

M. R. Roussel and S. J. Fraser., Geometry of the steady-state approximation: Perturbation and accelerated convergence methods., Journal of Chemical Physics, (1990), 1072.

[12]

F. Verhulst., Methods and Applications of Singular Perturbations., Number 50 in Texts in Applied Mathematics. Springer, (2005).

[13]

A. K. Zvonkin and M. A. Shubin., Non-standard analysis and singular perturbations of ordinary differential equations., Russian Mathematical Surveys, (1984), 77.

show all references

References:
[1]

E. Benoit, J. L. Callot, F. Diener, and M. Diener., Chasse au canard., Collectanea Mathematica, (1981), 37.

[2]

K. M. Beutel and E. Peacock-López., Complex dynamics in a cross-catalytic self-replication mechanism., Journal of Chemical Physics, (2007).

[3]

M. Brøns., Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures., Proceedings of the Royal Society of London Series A, (2005), 2289.

[4]

M. Brøns., Canard explosion of limit cycles in templator models of self-replication mechanisms., Journal of Chemical Physics, (2011).

[5]

M. Brøns and K. Bar-Eli., Asymptotic analysis of canards in the EOE equations and the role of the inflection line., Proceedings of the Royal Society of London Series A, (1994), 305.

[6]

M. Brøns and J. Sturis., Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system., Physical Review E, (2001).

[7]

M. Desroches and M. R: Jeffrey., Canards and curvature: the 'smallness' of $\epsilon$ in slow-fast dynamics., Proceedings of the Royal Society of London Series A, (2011), 2404.

[8]

W. Eckhaus., Relaxation oscillations including a standard chase on French ducks., In Asymptotic Analysis II, (1983), 449.

[9]

S. J. Fraser., The steady state and equilibrium approximations: A geometrical picture., Journal of Chemical Physics, (1988), 4732.

[10]

M. Krupa and P. Szmolyan., Relaxation oscillations and canard explosion., Journal of Differential Equations, (2001), 312.

[11]

M. R. Roussel and S. J. Fraser., Geometry of the steady-state approximation: Perturbation and accelerated convergence methods., Journal of Chemical Physics, (1990), 1072.

[12]

F. Verhulst., Methods and Applications of Singular Perturbations., Number 50 in Texts in Applied Mathematics. Springer, (2005).

[13]

A. K. Zvonkin and M. A. Shubin., Non-standard analysis and singular perturbations of ordinary differential equations., Russian Mathematical Surveys, (1984), 77.

[1]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[2]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[3]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[4]

Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 657-675. doi: 10.3934/dcds.2007.18.657

[5]

CANELA JORDI. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153

[6]

P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 109-140. doi: 10.3934/dcds.2011.29.109

[7]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[8]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[9]

Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157

[10]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[11]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[12]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[13]

David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262-275. doi: 10.3934/proc.1998.1998.262

[14]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[15]

Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689-718. doi: 10.3934/jmd.2007.1.689

[16]

Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[17]

Mohamed Sami ElBialy. Locally Lipschitz perturbations of bisemigroups. Communications on Pure & Applied Analysis, 2010, 9 (2) : 327-349. doi: 10.3934/cpaa.2010.9.327

[18]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[19]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[20]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]