
Previous Article
Modeling confinement in Étang de Thau: Numerical simulations and multiscale aspects
 PROC Home
 This Issue

Next Article
The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary
An iterative method for the canard explosion in general planar systems
1.  Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark 
References:
show all references
References:
[1] 
Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179193. doi: 10.3934/cpaa.2009.8.179 
[2] 
Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems  S, 2012, 5 (3) : 567580. doi: 10.3934/dcdss.2012.5.567 
[3] 
Claudio Marchi. On the convergence of singular perturbations of HamiltonJacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 13631377. doi: 10.3934/cpaa.2010.9.1363 
[4] 
Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete & Continuous Dynamical Systems  A, 2007, 18 (4) : 657675. doi: 10.3934/dcds.2007.18.657 
[5] 
Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems  A, 2017, 37 (7) : 35673585. doi: 10.3934/dcds.2017153 
[6] 
P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete & Continuous Dynamical Systems  A, 2011, 29 (1) : 109140. doi: 10.3934/dcds.2011.29.109 
[7] 
Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303335. doi: 10.3934/eect.2016006 
[8] 
Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems  A, 2008, 20 (1) : 115137. doi: 10.3934/dcds.2008.20.115 
[9] 
Ogabi Chokri. On the $L^p$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 11571178. doi: 10.3934/cpaa.2016.15.1157 
[10] 
J. B. van den Berg, J. D. Mireles James. Parameterization of slowstable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 46374664. doi: 10.3934/dcds.2016002 
[11] 
Youri V. Egorov, Evariste SanchezPalencia. Remarks on certain singular perturbations with illposed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 12931305. doi: 10.3934/dcds.2011.31.1293 
[12] 
Yuzo Hosono. Traveling waves for a diffusive LotkaVolterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems  B, 2003, 3 (1) : 7995. doi: 10.3934/dcdsb.2003.3.79 
[13] 
David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262275. doi: 10.3934/proc.1998.1998.262 
[14] 
Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems  A, 2012, 32 (5) : 14811502. doi: 10.3934/dcds.2012.32.1481 
[15] 
Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689718. doi: 10.3934/jmd.2007.1.689 
[16] 
Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems  A, 2015, 35 (2) : 703723. doi: 10.3934/dcds.2015.35.703 
[17] 
Mohamed Sami ElBialy. Locally Lipschitz perturbations of bisemigroups. Communications on Pure & Applied Analysis, 2010, 9 (2) : 327349. doi: 10.3934/cpaa.2010.9.327 
[18] 
Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete & Continuous Dynamical Systems  A, 2015, 35 (5) : 18291841. doi: 10.3934/dcds.2015.35.1829 
[19] 
Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control & Related Fields, 2018, 8 (2) : 397410. doi: 10.3934/mcrf.2018016 
[20] 
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603614. doi: 10.3934/mbe.2006.3.603 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]