2013, 2013(special): 69-76. doi: 10.3934/proc.2013.2013.69

Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects

1. 

INRIA, Virtual Plants, C.C. 06002, 95 rue de la Galéra, 34095 Montpellier Cedex 5, France

2. 

Université Européenne de Bretagne, LMBA (UMR CNRS 6205), Université de Bretagne-Sud & Inria Nancy-Grand Est, CALVI Project, France

3. 

INRIA, Inria & LJK, 95 rue de la Galéra, 34090 Montpellier, France

Received  September 2012 Revised  February 2013 Published  November 2013

The main purpose of this paper is to implement the mathematical model of confinement proposed in [8] in an actual lagoon, here the Étang de Thau, in southern France.
Citation: Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69
References:
[1]

J. Audoin, Hydrologie de l'étang de Thau., Revue des Travaux de l'Institut des Pêches Maritimes, (1962), 5.

[2]

E. Abadie, Z Amzil, C Belin, M.-A. Comps, P. Elzière-Papayanni, P. Lassus, C. Le Bec, C. Marcaillou-Le-Baut, and E.and Poggi R. Nézan., Contamination de l'étang de Thau par Alexandrium tamarense., Technical report, (1999).

[3]

R. S. K. Barnes., A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal europe., Estuarine, (1994), 41.

[4]

C. Delbos, A. Damasso, and J. Gilbert., Une ressouce alimentaire : la conchyliculture., CIHEAM - Options Mediterraneennes, (1975), 65.

[5]

J.-P. Debenay, J.-P. Perthuisot, and B. Colleuil., Expression numérique du confinement par les peuplements de foraminifères. app. aux domaines paral. actuels afri. w., C. R. Acad. Sci., (1993), 1823.

[6]

B. Engquist and A. Majda., Absorbing boundary conditions for the numerical simulation of waves., Math. Comp., (1977), 629.

[7]

E. Frénod and E. Goubert., A first step towards modelling confinement of paralic ecosystems., Ecological Modelling, (2007), 1.

[8]

E. Frénod and A. Rousseau., Paralic confinement: Models and simulations., Acta Applicandae Mathematicae, (2013), 1.

[9]

O. Guélorget, G. F. Frisoni, and J.-P. Perthuisot., La zonation biologique des milieux lagunaires : définition d'une échelle de confinement dans le domaine paralique méditérranéen., Journal de Recherche Océanographique, (1983), 15.

[10]

O. Guélorget, D. Gaujous, M. Louis, and J.-P. Perthuisot., Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles) : role and expression of confinement., Journal of Coastal Research, (1990), 611.

[11]

O. Guélorget and J.-P. Perthuisot., Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique., Sciences Géologiques, (1983), 25.

[12]

O. Guélorget and J.-P. Perthuisot., Le domaine paralique. Expressions géologiques biologique, et économique du confinement., Presse de l'école normale supérieure 16-1983, (1983), 16.

[13]

L. Halpern., Artificial boundary conditions for the linear advection diffusion equation., Math. Comp., (1986), 425.

[14]

F. Hecht, O. Pironneau, and A. Le Hyaric., FreeFem++ manual., 2004., ().

[15]

L. Halpern and M. Schatzman., Artificial boundary conditions for incompressible viscous flows., SIAM J. Math. Anal., (1989), 308.

[16]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin, and J.-P. Perthuisot., Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte)., Oceanologica Acta, (1985), 303.

[17]

F. Redois and J.-P. Debenay., Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale., Revue de Paléobiologie, (1996), 243.

[18]

D. Tagliapietra, M. Sigovini, and V. Ghirardini., A review of terms and definitions to categorise estuaries, lagoons and associated environments., Marine and Freshwater Research, (2009), 497.

show all references

References:
[1]

J. Audoin, Hydrologie de l'étang de Thau., Revue des Travaux de l'Institut des Pêches Maritimes, (1962), 5.

[2]

E. Abadie, Z Amzil, C Belin, M.-A. Comps, P. Elzière-Papayanni, P. Lassus, C. Le Bec, C. Marcaillou-Le-Baut, and E.and Poggi R. Nézan., Contamination de l'étang de Thau par Alexandrium tamarense., Technical report, (1999).

[3]

R. S. K. Barnes., A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal europe., Estuarine, (1994), 41.

[4]

C. Delbos, A. Damasso, and J. Gilbert., Une ressouce alimentaire : la conchyliculture., CIHEAM - Options Mediterraneennes, (1975), 65.

[5]

J.-P. Debenay, J.-P. Perthuisot, and B. Colleuil., Expression numérique du confinement par les peuplements de foraminifères. app. aux domaines paral. actuels afri. w., C. R. Acad. Sci., (1993), 1823.

[6]

B. Engquist and A. Majda., Absorbing boundary conditions for the numerical simulation of waves., Math. Comp., (1977), 629.

[7]

E. Frénod and E. Goubert., A first step towards modelling confinement of paralic ecosystems., Ecological Modelling, (2007), 1.

[8]

E. Frénod and A. Rousseau., Paralic confinement: Models and simulations., Acta Applicandae Mathematicae, (2013), 1.

[9]

O. Guélorget, G. F. Frisoni, and J.-P. Perthuisot., La zonation biologique des milieux lagunaires : définition d'une échelle de confinement dans le domaine paralique méditérranéen., Journal de Recherche Océanographique, (1983), 15.

[10]

O. Guélorget, D. Gaujous, M. Louis, and J.-P. Perthuisot., Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles) : role and expression of confinement., Journal of Coastal Research, (1990), 611.

[11]

O. Guélorget and J.-P. Perthuisot., Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique., Sciences Géologiques, (1983), 25.

[12]

O. Guélorget and J.-P. Perthuisot., Le domaine paralique. Expressions géologiques biologique, et économique du confinement., Presse de l'école normale supérieure 16-1983, (1983), 16.

[13]

L. Halpern., Artificial boundary conditions for the linear advection diffusion equation., Math. Comp., (1986), 425.

[14]

F. Hecht, O. Pironneau, and A. Le Hyaric., FreeFem++ manual., 2004., ().

[15]

L. Halpern and M. Schatzman., Artificial boundary conditions for incompressible viscous flows., SIAM J. Math. Anal., (1989), 308.

[16]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin, and J.-P. Perthuisot., Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte)., Oceanologica Acta, (1985), 303.

[17]

F. Redois and J.-P. Debenay., Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale., Revue de Paléobiologie, (1996), 243.

[18]

D. Tagliapietra, M. Sigovini, and V. Ghirardini., A review of terms and definitions to categorise estuaries, lagoons and associated environments., Marine and Freshwater Research, (2009), 497.

[1]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[2]

T. J. Newman. Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005, 2 (3) : 613-624. doi: 10.3934/mbe.2005.2.613

[3]

Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289

[4]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[5]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[6]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[7]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[8]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[9]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[10]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[11]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[12]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[13]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[14]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[15]

Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010

[16]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[17]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[18]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[19]

Yanzhao Cao, Anping Liu, Zhimin Zhang. Special section on differential equations: Theory, application, and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : i-ii. doi: 10.3934/dcdsb.2015.20.5i

[20]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

[Back to Top]