2013, 2013(special): 61-68. doi: 10.3934/proc.2013.2013.61

R&d dynamics

1. 

FCUP, University of Porto, Portugal, Portugal

2. 

LIAAD-INESC TEC Porto LA, Portugal, Portugal

Received  September 2012 Published  November 2013

We study a Cournot duopoly model using Ferreira-Oliveira-Pinto's R&D investment function. We find the multiple perfect Nash equilibria and we analyse the economical relevant quantities like output levels, prices, consumer surplus, profits and welfare.
Citation: J. Becker, M. Ferreira, B.M.P.M. Oliveira, A.A. Pinto. R&d dynamics. Conference Publications, 2013, 2013 (special) : 61-68. doi: 10.3934/proc.2013.2013.61
References:
[1]

C. d'Aspremont and A. Jacquemin, Cooperative and noncooperative R$&$D in duopoly with spillovers,, In, 78 (1988), 1133.

[2]

J. A. Brander and B. J. Spencer, Strategic commitment with R$&$D: The symmetric case,, In, 14 (1983), 225.

[3]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses,, Paris, (1838).

[4]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, "Quantity Competition in a Differentiated Duopoly. Intelligent Engineering Systems and Computational Cybernetics,", Springer Netherlands, (2008).

[5]

M. Ferreira, B. M. P. M. Oliveira and A. A. Pinto, Patents in new technologies,, In, 15 (2009), 1135.

[6]

M. Ferreira, I. F. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, In, (2011).

[7]

M. Ferreira, B. M. P. M. Oliveira and A. A. Pinto, Piecewise R&D Dynamics on costs,, In, 44 (2010), 29.

[8]

A. A. Pinto, B. Oliveira, F. A. Ferreira and M. Ferreira, "Investing to Survive in a Duopoly Model. Intelligent Engineering Systems and Computational Cybernetics,", Springer Netherlands, (2008).

[9]

L. Ruff,., Research and technological progress in a Cournot economy,, In, 1 (1969), 397.

[10]

J. Tirole, "The Theory of Industrial Organization,", MIT Press, (1988).

[11]

N. Singh and X. Vives, Price and quantity competition in a differentiated duopoly,, In, 15 (1984), 546.

show all references

References:
[1]

C. d'Aspremont and A. Jacquemin, Cooperative and noncooperative R$&$D in duopoly with spillovers,, In, 78 (1988), 1133.

[2]

J. A. Brander and B. J. Spencer, Strategic commitment with R$&$D: The symmetric case,, In, 14 (1983), 225.

[3]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses,, Paris, (1838).

[4]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, "Quantity Competition in a Differentiated Duopoly. Intelligent Engineering Systems and Computational Cybernetics,", Springer Netherlands, (2008).

[5]

M. Ferreira, B. M. P. M. Oliveira and A. A. Pinto, Patents in new technologies,, In, 15 (2009), 1135.

[6]

M. Ferreira, I. F. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, In, (2011).

[7]

M. Ferreira, B. M. P. M. Oliveira and A. A. Pinto, Piecewise R&D Dynamics on costs,, In, 44 (2010), 29.

[8]

A. A. Pinto, B. Oliveira, F. A. Ferreira and M. Ferreira, "Investing to Survive in a Duopoly Model. Intelligent Engineering Systems and Computational Cybernetics,", Springer Netherlands, (2008).

[9]

L. Ruff,., Research and technological progress in a Cournot economy,, In, 1 (1969), 397.

[10]

J. Tirole, "The Theory of Industrial Organization,", MIT Press, (1988).

[11]

N. Singh and X. Vives, Price and quantity competition in a differentiated duopoly,, In, 15 (1984), 546.

[1]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[2]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[5]

Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009

[6]

Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics & Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009

[7]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[8]

Yan Zeng, Zhongfei Li. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. Journal of Industrial & Management Optimization, 2012, 8 (3) : 673-690. doi: 10.3934/jimo.2012.8.673

[9]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[10]

Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151

[11]

Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455

[12]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[13]

Cheng-Kang Chen, Yi-Xiang Liao. A deteriorating inventory model for an intermediary firm under return on inventory investment maximization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 989-1000. doi: 10.3934/jimo.2014.10.989

[14]

Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics & Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019

[15]

Dingjun Yao, Hailiang Yang, Rongming Wang. Optimal financing and dividend strategies in a dual model with proportional costs. Journal of Industrial & Management Optimization, 2010, 6 (4) : 761-777. doi: 10.3934/jimo.2010.6.761

[16]

Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022

[17]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[18]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[19]

Chang-Feng Wang, Yan Han. Optimal assignment of principalship and residual distribution for cooperative R&D. Journal of Industrial & Management Optimization, 2012, 8 (1) : 127-139. doi: 10.3934/jimo.2012.8.127

[20]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]