2013, 2013(special): 51-59. doi: 10.3934/proc.2013.2013.51

Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy

Received  September 2012 Published  November 2013

In this paper we investigate the existence of infinitely many radial solutions for the elliptic Dirichlet problem \[ \left\{ \begin{array}{ll} \displaystyle{-\Delta_p u\ =|u|^{q-2}u + f(x)} & \mbox{ in } B_R,\\ \displaystyle{u=\xi} & \mbox{ on } \partial B_R,\\ \end{array} \right. \] where $B_R$ is the open ball centered in $0$ with radius $R$ in $\mathbb{R}^N$ ($N \geq 3$), $2 < p < N$, $p< q < p^*$ (with $p^* = \frac{pN}{N-p}$), $\xi\in\mathbb{R}$ and $f$ is a continuous radial function in $\overline B_R$. The lack of even symmetry for the related functional is overcome by using some perturbative methods and the radial assumptions allow us to improve some previous results.
Citation: Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51
References:
[1]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[2]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.

[3]

R. Bartolo, Infinitely many solutions for quasilinear elliptic problems with broken symmetry,, Adv. Nonlinear Stud., 13 (2013), 739.

[4]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.

[5]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[6]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[7]

A. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.

[8]

A. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, In:, (2001).

[9]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).

[10]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.

[11]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N. S.), 58 (2001), 339.

[12]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.

[13]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.

[14]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.

[15]

D. Liu and D. Geng, Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations,, Electron. J. Differential Equations, 101 (2008).

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986).

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[19]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

[20]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.

[21]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, (1978).

show all references

References:
[1]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[2]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.

[3]

R. Bartolo, Infinitely many solutions for quasilinear elliptic problems with broken symmetry,, Adv. Nonlinear Stud., 13 (2013), 739.

[4]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.

[5]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[6]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[7]

A. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.

[8]

A. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, In:, (2001).

[9]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).

[10]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.

[11]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N. S.), 58 (2001), 339.

[12]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.

[13]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.

[14]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.

[15]

D. Liu and D. Geng, Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations,, Electron. J. Differential Equations, 101 (2008).

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986).

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[19]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

[20]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.

[21]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, (1978).

[1]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[2]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[3]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[4]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[5]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[6]

Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233

[7]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[8]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[9]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[10]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[11]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[12]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[13]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[14]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[15]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[16]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[17]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[18]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[19]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[20]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]