
Previous Article
Classification of positive solutions of semilinear elliptic equations with Hardy term
 PROC Home
 This Issue

Next Article
Infinitely many radial solutions of a nonhomogeneous $p$Laplacian problem
Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains
1.  Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy, Italy 
References:
show all references
References:
[1] 
Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 27132731. doi: 10.3934/cpaa.2014.13.2713 
[2] 
Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11211134. doi: 10.3934/cpaa.2017054 
[3] 
Luca Rossi. Nonexistence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125141. doi: 10.3934/cpaa.2008.7.125 
[4] 
João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571581. doi: 10.3934/cpaa.2006.5.571 
[5] 
Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 7479. doi: 10.3934/proc.2001.2001.74 
[6] 
HwaiChiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886894. doi: 10.3934/proc.2005.2005.886 
[7] 
Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 13891400. doi: 10.3934/dcdsb.2016001 
[8] 
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems  A, 2006, 15 (2) : 447479. doi: 10.3934/dcds.2006.15.447 
[9] 
Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943953. doi: 10.3934/cpaa.2010.9.943 
[10] 
Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885904. doi: 10.3934/cpaa.2010.9.885 
[11] 
Tomás SanzPerela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 25472575. doi: 10.3934/cpaa.2018121 
[12] 
Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems  A, 2018, 38 (9) : 45374554. doi: 10.3934/dcds.2018198 
[13] 
Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 11571166. doi: 10.3934/cpaa.2012.11.1157 
[14] 
Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems  A, 2015, 35 (3) : 891907. doi: 10.3934/dcds.2015.35.891 
[15] 
Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems  B, 2009, 11 (1) : 131143. doi: 10.3934/dcdsb.2009.11.131 
[16] 
Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems  A, 2011, 30 (4) : 10831093. doi: 10.3934/dcds.2011.30.1083 
[17] 
Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems  A, 2007, 17 (4) : 751770. doi: 10.3934/dcds.2007.17.751 
[18] 
Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete & Continuous Dynamical Systems  A, 2007, 19 (2) : 323333. doi: 10.3934/dcds.2007.19.323 
[19] 
Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems  A, 2014, 34 (6) : 26572667. doi: 10.3934/dcds.2014.34.2657 
[20] 
Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230238. doi: 10.3934/proc.2015.0230 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]