`a`

Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains

Pages: 41 - 49, Issue special, November 2013

 Abstract        References        Full Text (350.2K)              

Sara Barile - Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy (email)
Addolorata Salvatore - Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy (email)

Abstract: We study a superlinear perturbed elliptic problem on $\mathbb R^N$ with rotational symmetry. Using variational and perturbative methods we find infinitely many radial solutions for any growth exponent $p$ of the nonlinearity greater than $2$ and less than $2^*$ if $N \geq 4$ and for any $p$ greater than $3$ and subcritical if $N =3$.

Keywords:  Radial solutions, variational and perturbative methods, unbounded domains, elliptic equations with broken symmetry.
Mathematics Subject Classification:  Primary: 35J20; Secondary: 35B38, 58E05.

Received: September 2012;      Revised: May 2013;      Published: November 2013.

 References