2013, 2013(special): 41-49. doi: 10.3934/proc.2013.2013.41

Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains

1. 

Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy, Italy

Received  September 2012 Revised  May 2013 Published  November 2013

We study a superlinear perturbed elliptic problem on $\mathbb R^N$ with rotational symmetry. Using variational and perturbative methods we find infinitely many radial solutions for any growth exponent $p$ of the nonlinearity greater than $2$ and less than $2^*$ if $N \geq 4$ and for any $p$ greater than $3$ and subcritical if $N =3$.
Citation: Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41
References:
[1]

A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in cri\-ti\-cal point theory and applications,, J. Funct. Anal., 14 (1973), 349.

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[3]

A. Bahri and P.L. Lions, Morse index of some mini-max critical points,, Comm. Pure Appl. Math., 41 (1988), 1027.

[4]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.

[5]

F.A. Berezin and M.A. Shubin, The Schr\"odinger equation,, Mathematics and its Applications (Soviet Series) 66, (1991).

[6]

P. Bolle, On the Bolza Problem,, J. Differential Equations, 152 (1999), 274.

[7]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).

[9]

A.M. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[10]

A.M. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non-homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.

[11]

A.M. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, Dynam. Contin. Discrete Impuls. Systems Ser. A, 10 (2003), 181.

[12]

M. Clapp, Y. Ding and S. Hern\`andez-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of non symmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004), 1.

[13]

S.I. Pohozaev, On the global fibering method in nonlinear variational problems,, Proc. Steklov Inst. Math., 219 (1997), 281.

[14]

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Regional Conference Series in Mathematics, 65 (1986).

[15]

P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[16]

A. Salvatore, Multiple radial solutions for a superlinear elliptic problem in $\mathbb R^N$,, Dynam. Systems and Applications, 4 (2004), 472.

[17]

W.A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[19]

K. Tanaka, Morse indices at critical points related to the Symmetric Mountain Pass Theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

show all references

References:
[1]

A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in cri\-ti\-cal point theory and applications,, J. Funct. Anal., 14 (1973), 349.

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[3]

A. Bahri and P.L. Lions, Morse index of some mini-max critical points,, Comm. Pure Appl. Math., 41 (1988), 1027.

[4]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.

[5]

F.A. Berezin and M.A. Shubin, The Schr\"odinger equation,, Mathematics and its Applications (Soviet Series) 66, (1991).

[6]

P. Bolle, On the Bolza Problem,, J. Differential Equations, 152 (1999), 274.

[7]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).

[9]

A.M. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[10]

A.M. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non-homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.

[11]

A.M. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, Dynam. Contin. Discrete Impuls. Systems Ser. A, 10 (2003), 181.

[12]

M. Clapp, Y. Ding and S. Hern\`andez-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of non symmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004), 1.

[13]

S.I. Pohozaev, On the global fibering method in nonlinear variational problems,, Proc. Steklov Inst. Math., 219 (1997), 281.

[14]

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Regional Conference Series in Mathematics, 65 (1986).

[15]

P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[16]

A. Salvatore, Multiple radial solutions for a superlinear elliptic problem in $\mathbb R^N$,, Dynam. Systems and Applications, 4 (2004), 472.

[17]

W.A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[19]

K. Tanaka, Morse indices at critical points related to the Symmetric Mountain Pass Theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

[1]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[2]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[3]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[4]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[5]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[6]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[7]

Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001

[8]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[9]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[10]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[11]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[12]

Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198

[13]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[14]

Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891

[15]

Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 131-143. doi: 10.3934/dcdsb.2009.11.131

[16]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[17]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[18]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[19]

Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657

[20]

Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230-238. doi: 10.3934/proc.2015.0230

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]