2013, 2013(special): 1-10. doi: 10.3934/proc.2013.2013.1

Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise

1. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Received  September 2012 Revised  December 2012 Published  November 2013

In this paper, we prove the existence and uniqueness of random attractors for the FitzHugh-Nagumo system defined on $\mathbb{R}^n$ driven by both deterministic non-autonomous forcing and multiplicative noise. The periodicity of random attractors is established when the system is perturbed by time periodic forcing. We also prove the upper semicontinuity of random attractors when the intensity of noise approaches zero.
Citation: Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1
References:
[1]

P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, {\em Stoch. Dyn.}, 6 (2006), 1.

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, {\em J. Differential Equations}, 246 (2009), 845.

[3]

T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, {\em Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 439.

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, {\em Probab. Th. Re. Fields}, 100 (1994), 365.

[5]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, {\em Comm. Math. Sci.}, 1 (2003), 133.

[6]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, {\em Stoch. Stoch. Rep.}, 59 (1996), 21.

[7]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, {\em International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior}, (1992), 185.

[8]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, {\em J. Differential Equations}, 253 (2012), 1544.

[9]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms,, arXiv:1205.4658v1, (2012).

[10]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, Series A,, {\bf 34} (2014), 34 (2014), 269.

show all references

References:
[1]

P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, {\em Stoch. Dyn.}, 6 (2006), 1.

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, {\em J. Differential Equations}, 246 (2009), 845.

[3]

T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, {\em Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 439.

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, {\em Probab. Th. Re. Fields}, 100 (1994), 365.

[5]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, {\em Comm. Math. Sci.}, 1 (2003), 133.

[6]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, {\em Stoch. Stoch. Rep.}, 59 (1996), 21.

[7]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, {\em International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior}, (1992), 185.

[8]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, {\em J. Differential Equations}, 253 (2012), 1544.

[9]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms,, arXiv:1205.4658v1, (2012).

[10]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, Series A,, {\bf 34} (2014), 34 (2014), 269.

[1]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[2]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018077

[3]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[4]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018118

[5]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[6]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[7]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[8]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[9]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[10]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[11]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[12]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[13]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[14]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[15]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[16]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[17]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[18]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[19]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[20]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]