2011, 2011(Special): 1319-1328. doi: 10.3934/proc.2011.2011.1319

Existence and continuity of strong solutions of partly dissipative reaction diffusion systems

1. 

Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17601, United States

Received  July 2010 Revised  April 2011 Published  October 2011

We discuss the existence and continuity of strong solutions of partly dissipative reaction diffusion systems of the FitzHugh-Nagumo type. Under appropriate conditions, we proved the existence of strong solutions of such systems on $[0, \infty)$ using a Galerkin type of argument. Then we proved that these strong solutions are continuous with respect to initial data in the space $V \times H^1 (\Omega)$, where $V$ is a subspace of $H^1 (\Omega)$ defined according to the boundary condition imposed for the $u$- component in our system. The continuity result is independent of the spatial dimension $n$.
Citation: Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319
[1]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[2]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[3]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[4]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[5]

Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521

[6]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[7]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[8]

Marina V. Plekhanova. Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 833-846. doi: 10.3934/dcdss.2016031

[9]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[10]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[11]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[12]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[13]

Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033

[14]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[15]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[16]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[17]

Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1563-1580. doi: 10.3934/cpaa.2015.14.1563

[18]

Elder J. Villamizar-Roa, Elva E. Ortega-Torres. On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 825-847. doi: 10.3934/dcdsb.2011.15.825

[19]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[20]

Xiaojun Chang, Yong Li. Rotating periodic solutions of second order dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 643-652. doi: 10.3934/dcds.2016.36.643

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]