2011, 2011(Special): 1299-1308. doi: 10.3934/proc.2011.2011.1299

Stochastic wave equations with cubic nonlinearity and Q-regular additive noise in $\mathbb{R}^2$

1. 

Southern Illinois University, Department of Mathematics, MC 4408, 1245 Lincoln Drive, Carbondale, IL 62901-7316

Received  July 2010 Revised  March 2011 Published  October 2011

Semi-linear wave equations on rectangular domains in $\mathbb{R}^2$ (vibrating plates) with certain cubic quasi-nonlinearities and perturbed by a Q-regular space-time white noise are considered analytically. These models as 2nd order SPDEs (stochastic partial differential equations) with non-random Dirichlet- type boundary conditions describe the displacement of noisy vibrations of rectangular plates as met in engineering. We discuss their analysis by the eigen- function approach allowing us to truncate the infinite-dimensional stochastic systems (i.e. the SDEs of Fourier coefficients related to semilinear SPDEs), to control its energy, existence, uniqueness, continuity and stability. A conservation law for at most linearly growing expected energy is established in terms of system-parameters.
Citation: Henri Schurz. Stochastic wave equations with cubic nonlinearity and Q-regular additive noise in $\mathbb{R}^2$. Conference Publications, 2011, 2011 (Special) : 1299-1308. doi: 10.3934/proc.2011.2011.1299
[1]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[2]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[3]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[4]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[5]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[6]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018056

[7]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[8]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[9]

Igor Kukavica. On Fourier parametrization of global attractors for equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 553-560. doi: 10.3934/dcds.2005.13.553

[10]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[11]

Kei Nakamura, Tohru Ozawa. Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 789-801. doi: 10.3934/dcds.2013.33.789

[12]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[13]

Carl Bracken, Zhengbang Zha. On the Fourier spectra of the infinite families of quadratic APN functions. Advances in Mathematics of Communications, 2009, 3 (3) : 219-226. doi: 10.3934/amc.2009.3.219

[14]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[15]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[16]

Tomás Caraballo, P.E. Kloeden, B. Schmalfuss. Stabilization of stationary solutions of evolution equations by noise. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1199-1212. doi: 10.3934/dcdsb.2006.6.1199

[17]

T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177

[18]

Nathan Glatt-Holtz, Mohammed Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 801-822. doi: 10.3934/dcdsb.2008.10.801

[19]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[20]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]