2011, 2011(Special): 931-940. doi: 10.3934/proc.2011.2011.931

Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium

1. 

Dipartimento di Matematica, Università di Bari, via Orabona 4, 70125 Bari

2. 

Department of Mathematics and Statistics, Parker Hall, Auburn University, AL 36849-5310, United States

Received  August 2010 Revised  April 2011 Published  October 2011

We study a parameter-dependent single-loop positive-feedback system in the nonnegative orthant of $\mathbb{R}^n$, with $n\in\mathbb{N}$, that arises in the analysis of the blow-up behavior of large radial solutions of polyharmonic PDEs with power nonlinearities. We describe the global dynamics of the system for arbitrary $n$ and prove that, in every dimension $n\<=4$, all forward-bounded solutions converge to one of two equilibria (one stable, the other unstable). In Part 2 of the paper, we will establish the existence of nontrivial periodic orbits in every dimension $n \>= 12$.
Citation: Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931
[1]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 2. Periodic solutions. Conference Publications, 2011, 2011 (Special) : 941-952. doi: 10.3934/proc.2011.2011.941

[2]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[3]

D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495

[4]

Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

[5]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[6]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[7]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[8]

Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259

[9]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-14. doi: 10.3934/jimo.2017061

[10]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[11]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

[12]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[13]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems . Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[14]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[15]

Zhi-Cheng Wang. Traveling curved fronts in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2339-2374. doi: 10.3934/dcds.2012.32.2339

[16]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[17]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[18]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[19]

B. A. Wagner, Andrea L. Bertozzi, L. E. Howle. Positive feedback control of Rayleigh-Bénard convection. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 619-642. doi: 10.3934/dcdsb.2003.3.619

[20]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]