2011, 2011(Special): 813-823. doi: 10.3934/proc.2011.2011.813

FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam

1. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock TX, 79409-1042

2. 

Department of Mathematical Sciences, George Mason University, Fairfax VA, 22030

Received  July 2010 Revised  April 2011 Published  October 2011

In this work we consider the dynamical response of a non-linear beam interacting with potential flow. The beam part is modeled using a non-linear system of momentum equations for the axial and transverse displacements. Changing in the beam thickness has been modeled in the momentum of inertia. The fluid flow part is subjected to the Bernoulli potential law. In particular we show that for a class of boundary conditions and for a speci c constraint in the beam thickness rate of change, there exists an appropriate energy norm which is bounded by the incoming flow velocity in the liquid region.
Citation: Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813
[1]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[2]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[3]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[4]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[5]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[6]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[7]

Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111

[8]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[9]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[10]

. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 14 (1) : i-i. doi: 10.3934/dcdss.201702i

[11]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 165-182. doi: 10.3934/dcds.2008.22.165

[12]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[13]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[14]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 435-454. doi: 10.3934/dcds.2009.23.435

[15]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[16]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[17]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[18]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[19]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

[20]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

[Back to Top]