• Previous Article
    Distributed mathematical models of undetermined "without preference" motion of traffic flow
  • PROC Home
  • This Issue
  • Next Article
    New regularizing approach to determining the influence coefficient matrix for gas-turbine engines
2011, 2011(Special): 601-613. doi: 10.3934/proc.2011.2011.601

On continuous models of current stock of divisible productions


Institute of Mathematical Sciences and Information Technologies, University of Liepaja, Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia


Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia, Latvia

Received  August 2010 Revised  April 2011 Published  October 2011

In the given paper we investigate the problem of constructing continuous and unsteady mathematical models, to determine the volumes of current stock of divisible productions, in one or several interconnected warehouses using the apparatus of mathematical physics and continuum principle. It is assumed that production distribution and replenishment is continuous. The constructed models are stochastic, and have di erent levels of complexity, adequacy and application potential. The simple model is constructed using the theory of ODE, for construction of more complex models the theory of PDE is applied. Also using additional conditions for the finite-diff erenced model for determination of random volume of divisible homogeneous production is constructed, and this nite di erenced mathematical model makes it possible to determine one of the possible trajectories of the random quantity. All constructed models can be used for on-line monitoring of the dynamics of the random productions volumes.
Citation: Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventory-production system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1511-1535. doi: 10.3934/jimo.2017005


Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153


Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002


Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-20. doi: 10.3934/jimo.2017079


Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578


Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial & Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945


Xin Zhou, Liangping Shi, Bingzhi Huang. Integrated inventory model with stochastic lead time and controllable variability for milk runs. Journal of Industrial & Management Optimization, 2012, 8 (3) : 657-672. doi: 10.3934/jimo.2012.8.657


Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008


Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257


Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339


Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577


Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009


Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002


Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040


Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1449-1464. doi: 10.3934/mbe.2014.11.1449


A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909


V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621


Qi Feng, Suresh P. Sethi, Houmin Yan, Hanqin Zhang. Optimality and nonoptimality of the base-stock policy in inventory problems with multiple delivery modes. Journal of Industrial & Management Optimization, 2006, 2 (1) : 19-42. doi: 10.3934/jimo.2006.2.19


Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 403-415. doi: 10.3934/dcdsb.2013.18.403


Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

 Impact Factor: 


  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]