# American Institute of Mathematical Sciences

2011, 2011(Special): 589-600. doi: 10.3934/proc.2011.2011.589

## Distributed mathematical models of undetermined "without preference" motion of traffic flow

 1 Institute of Mathematical Sciences and Information Technologies, University of Liepaja, Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia 2 Department of Mechanics and Mathematics, Baku State University, 23 Academician Zahid Xalilov Street, Baku AZ-1073/1, Azerbaidjan

Received  August 2010 Revised  April 2011 Published  October 2011

Present work proceeds non-deterministic motion of the two-dimensional (2D) vehicular traffic flow, where the traffic flow is assumed as flow of particles in the investigated environment with allowed motion in both forward and opposite directions. Besides, it is assumed that at any fixed time interval in the 2D flow, vehicles could change its positions on the road to any arbitrary placements at the de ned probabilities, even they might be not the neighbouring ones. Such a non-deterministic motion of 2D traffic flow will be named as motion "without preference". Under the pointed assumptions, first it is constructed the non-deterministic discrete mathimatical model, and later by means f using the principle of continuous system there are applied limiting transitions to the constructed discrete model. As a result nondeterministic continuous model in the form of initial-boundary value problem for the integro-di fferential equation is elaborated. In addition probabilistic interpretations of the constructed models and the received results are given.
Citation: Sharif E. Guseynov, Shirmail G. Bagirov. Distributed mathematical models of undetermined "without preference" motion of traffic flow. Conference Publications, 2011, 2011 (Special) : 589-600. doi: 10.3934/proc.2011.2011.589
 [1] Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813 [2] Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275 [3] Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 [4] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks & Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481 [5] Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869 [6] Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic & Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279 [7] Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 [8] Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 [9] Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257 [10] Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-7. doi: 10.3934/jimo.2018103 [11] Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1 [12] Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621 [13] Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431 [14] Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 [15] Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks & Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 [16] Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599 [17] Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009 [18] José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205 [19] José F. Alves. Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 363-375. doi: 10.3934/dcds.2001.7.363 [20] Rodrigo P. Pacheco, Rafael O. Ruggiero. On C1, β density of metrics without invariant graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 247-261. doi: 10.3934/dcds.2018012

Impact Factor: