2011, 2011(Special): 282-291. doi: 10.3934/proc.2011.2011.282

Cylindrical bending of cusped Reisner-Mindlin plates

1. 

I.Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, 2 University St., 0186 Tbilisi, Georgia

Received  July 2010 Revised  March 2011 Published  October 2011

Cylindrical bending of cusped Reisner-Mindlin plates are studied. Admissible boundary value problems are investigated. The setting of boundary conditions at the plate edges depends on the geometry of sharpenings of plate edges.
Citation: Natalia Chinchaladze. Cylindrical bending of cusped Reisner-Mindlin plates. Conference Publications, 2011, 2011 (Special) : 282-291. doi: 10.3934/proc.2011.2011.282
[1]

Maroje Marohnić, Igor Velčić. Homogenization of bending theory for plates; the case of oscillations in the direction of thickness. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2151-2168. doi: 10.3934/cpaa.2015.14.2151

[2]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure & Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[3]

Alexander Plakhov, Vera Roshchina. Fractal bodies invisible in 2 and 3 directions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1615-1631. doi: 10.3934/dcds.2013.33.1615

[4]

Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371

[5]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[6]

Nils Raabe, Claus Weihs. Physical statistical modelling of bending vibrations. Conference Publications, 2011, 2011 (Special) : 1214-1223. doi: 10.3934/proc.2011.2011.1214

[7]

Eric Férard. On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 497-509. doi: 10.3934/amc.2014.8.497

[8]

Xianhua Tang, Xingfu Zou. A 3/2 stability result for a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 265-278. doi: 10.3934/dcdsb.2002.2.265

[9]

Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002

[10]

Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613

[11]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[12]

Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk. Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks & Heterogeneous Media, 2007, 2 (2) : 255-277. doi: 10.3934/nhm.2007.2.255

[13]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[14]

Maria Grazia Naso. Controllability to trajectories for semilinear thermoelastic plates. Conference Publications, 2005, 2005 (Special) : 672-681. doi: 10.3934/proc.2005.2005.672

[15]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control & Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[16]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[17]

Shun Li, Peng-Fei Yao. Modeling of a nonlinear plate. Evolution Equations & Control Theory, 2012, 1 (1) : 155-169. doi: 10.3934/eect.2012.1.155

[18]

Giovanni Bellettini, Matteo Novaga, Shokhrukh Yusufovich Kholmatov. Minimizers of anisotropic perimeters with cylindrical norms. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1427-1454. doi: 10.3934/cpaa.2017068

[19]

Rejeb Hadiji, Ken Shirakawa. 3D-2D asymptotic observation for minimization problems associated with degenerate energy-coefficients. Conference Publications, 2011, 2011 (Special) : 624-633. doi: 10.3934/proc.2011.2011.624

[20]

Francisco Braun, José Ruidival dos Santos Filho. The real jacobian conjecture on $\R^2$ is true when one of the components has degree 3. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 75-87. doi: 10.3934/dcds.2010.26.75

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]