2011, 2011(Special): 240-249. doi: 10.3934/proc.2011.2011.240

Decay rate at infinity of the positive solutions of a generalized class of $T$homas-Fermi equations

1. 

Dpto. de Matemática Aplicada y Computación, Universidad Pontificia Comillas, Alberto Aguilera, 25, Madrid, 28015, Spain

Received  July 2010 Revised  March 2011 Published  October 2011

This paper ascertains the exact decay rate to zero at in nity of the unique positive solution of the generalized Thomas-Fermi BVP
Citation: Santiago Cano-Casanova. Decay rate at infinity of the positive solutions of a generalized class of $T$homas-Fermi equations. Conference Publications, 2011, 2011 (Special) : 240-249. doi: 10.3934/proc.2011.2011.240
[1]

Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167

[2]

Fredi Tröltzsch, Daniel Wachsmuth. On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Mathematical Control & Related Fields, 2018, 8 (1) : 135-153. doi: 10.3934/mcrf.2018006

[3]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[4]

David Henry, Rossen Ivanov. One-dimensional weakly nonlinear model equations for Rossby waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3025-3034. doi: 10.3934/dcds.2014.34.3025

[5]

Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025

[6]

Francesca Faraci, Alexandru Kristály. One-dimensional scalar field equations involving an oscillatory nonlinear term. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 107-120. doi: 10.3934/dcds.2007.18.107

[7]

Annalisa Cesaroni, Matteo Novaga, Andrea Pinamonti. One-dimensional symmetry for semilinear equations with unbounded drift. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2203-2211. doi: 10.3934/cpaa.2013.12.2203

[8]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[9]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[10]

Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167

[11]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[12]

Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences & Engineering, 2012, 9 (2) : 215-239. doi: 10.3934/mbe.2012.9.215

[13]

Inbo Sim. On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition. Communications on Pure & Applied Analysis, 2008, 7 (4) : 905-923. doi: 10.3934/cpaa.2008.7.905

[14]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[15]

Sebastian van Strien. One-dimensional dynamics in the new millennium. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 557-588. doi: 10.3934/dcds.2010.27.557

[16]

Maria João Costa. Chaotic behaviour of one-dimensional horseshoes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 505-548. doi: 10.3934/dcds.2003.9.505

[17]

Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185

[18]

Yunping Jiang. On a question of Katok in one-dimensional case. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209

[19]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[20]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]