2009, 2009(Special): 869-878. doi: 10.3934/proc.2009.2009.869

Pinned repetitions in symbolic flows: preliminary results

1. 

Department of Mathematics, Rice Unviersity, Houston, TX 77005

2. 

Department of Mathematics, Rice University, Houston, TX 77005

Received  July 2008 Revised  January 2009 Published  September 2009

We consider symbolic flows over finite alphabets and study certain kinds of repetitions in these sequences. Positive and negative results for the existence of such repetitions are given for codings of interval exchange transformations and codings of quadratic polynomials.
Citation: Michael Boshernitzan, David Damanik. Pinned repetitions in symbolic flows: preliminary results. Conference Publications, 2009, 2009 (Special) : 869-878. doi: 10.3934/proc.2009.2009.869
[1]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[2]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[3]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3/4) : 271-436. doi: 10.3934/jmd.2014.8.271

[4]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[5]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[6]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[7]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[8]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations . Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[9]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[10]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[11]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[12]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[13]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

[14]

Mike Boyle, Tomasz Downarowicz. Symbolic extension entropy: $c^r$ examples, products and flows. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 329-341. doi: 10.3934/dcds.2006.16.329

[15]

K. H. Kim and F. W. Roush. The Williams conjecture is false for irreducible subshifts. Electronic Research Announcements, 1997, 3: 105-109.

[16]

Shigeki Akiyama, Edmund Harriss. Pentagonal domain exchange. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4375-4400. doi: 10.3934/dcds.2013.33.4375

[17]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[18]

Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175

[19]

Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058

[20]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]